985 resultados para Lie nilpotent
Resumo:
Let * be an involution of a group G extended linearly to the group algebra KG. We prove that if G contains no 2-elements and K is a field of characteristic p, 0 2, then the *-symmetric elements of KG are Lie nilpotent (Lie n-Engel) if and only if KG is Lie nilpotent (Lie n-Engel). (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Let F-sigma(lambda)vertical bar G vertical bar be a crossed product of a group G and the field F. We study the Lie properties of F-sigma(lambda)vertical bar G vertical bar in order to obtain a characterization of those crossed products which are upper (lower) Lie nilpotent and Lie (n, m)-Engel. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
El objetivo de este proyecto es obtener resultados de calidad en el área de las representaciones y cohomología de álgebras de Lie complejas nilpotentes de dimensión finita. Los objetivos específicos son (1) Demostrar que la familia de nilradicales parabólicos de las subálgebras de Lie semisimples satisfacen la conjetura del rango toral. (2) Calcular explícitamente la cohomología, aunque sea en grados bajos, de las álgebras de Lie 3-pasos nilpotentes libres y las álgebras $\mathfrak{gl}(2,A_{k})$ donde $A_{k}$ es el álgebra de quiver truncada en $k$ asociada a un quiver cíclico de $k$ flechas (y $k$ vértices). (3) Determinar explícitamente qué diagramas de Young aparecen en la cohomología, calculada por Kostant, de los nilradicales parabólicos de las subálgebras de Lie semisimples. (4) Mejorar las actuales cotas para las representaciones fieles de dimensión mínima de álgebras de Lie 3-pasos nilpotentes.
Resumo:
2000 Mathematics Subject Classification: 17B01, 17B30, 17B40.
Resumo:
We study properties of self-iterating Lie algebras in positive characteristic. Let R = K[t(i)vertical bar i is an element of N]/(t(i)(p)vertical bar i is an element of N) be the truncated polynomial ring. Let partial derivative(i) = partial derivative/partial derivative t(i), i is an element of N, denote the respective derivations. Consider the operators v(1) = partial derivative(1) + t(0)(partial derivative(2) + t(1)(partial derivative(3) + t(2)(partial derivative(4) + t(3)(partial derivative(5) + t(4)(partial derivative(6) + ...))))); v(2) = partial derivative(2) + t(1)(partial derivative(3) + t(2)(partial derivative(4) + t(3)(partial derivative(5) + t(4)(partial derivative(6) + ...)))). Let L = Lie(p)(v(1), v(2)) subset of Der R be the restricted Lie algebra generated by these derivations. We establish the following properties of this algebra in case p = 2, 3. a) L has a polynomial growth with Gelfand-Kirillov dimension lnp/ln((1+root 5)/2). b) the associative envelope A = Alg(v(1), v(2)) of L has Gelfand-Kirillov dimension 2 lnp/ln((1+root 5)/2). c) L has a nil-p-mapping. d) L, A and the augmentation ideal of the restricted enveloping algebra u = u(0)(L) are direct sums of two locally nilpotent subalgebras. The question whether u is a nil-algebra remains open. e) the restricted enveloping algebra u(L) is of intermediate growth. These properties resemble those of Grigorchuk and Gupta-Sidki groups.
Resumo:
Let * be an involution of a group algebra FG induced by an involution of the group G. For char F not equal 2, we classify the torsion groups G with no elements of order 2 whose Lie algebra of *-skew elements is nilpotent.
Resumo:
We study the local properties of a class of codimension-2 defects of the 6d N = (2, 0) theories of type J = A, D, E labeled by nilpotent orbits of a Lie algebra $g, where g is determined by J and the outer-automorphism twist around the defect. This class is a natural generalization of the defects of the six-dimensional (6d) theory of type SU(N) labeled by a Young diagram with N boxes. For any of these defects, we determine its contribution to the dimension of the Higgs branch, to the Coulomb branch operators and their scaling dimensions, to the four-dimensional (4d) central charges a and c and to the flavor central charge k. © 2013 World Scientific Publishing Company.
Resumo:
This project was partially supported by RFBR, grants 99-01-00233, 98-01-01020 and 00-15-96128.
Resumo:
We analyze renormalizability properties of noncommutative (NC) theories with a bifermionic NC parameter. We introduce a new four-dimensional scalar field model which is renormalizable at all orders of the loop expansion. We show that this model has an infrared stable fixed point (at the one-loop level). We check that the NC QED (which is one-loop renormalizable with a usual NC parameter) remains renormalizable when the NC parameter is bifermionic, at least to the extent of one-loop diagrams with external photon legs. Our general conclusion is that bifermionic noncommutativity improves renormalizability properties of NC theories.
Resumo:
Irreducible nonzero level modules with finite-dimensional weight spaces are discussed for nontwisted affine Lie superalgebras. A complete classification of such modules is obtained for superalgebras of type A(m, n)(boolean AND) and C(n)(boolean AND) using Mathieu's classification of cuspidal modules over simple Lie algebras. In other cases the classification problem is reduced to the classification of cuspidal modules over finite-dimensional cuspidal Lie superalgebras described by Dimitrov, Mathieu and Penkov. Based on these results a. complete classification of irreducible integrable (in the sense of Kac and Wakimoto) modules is obtained by showing that any such module is of highest weight, in which case the problem was solved by Kac and Wakimoto.