992 resultados para Leishmania (Viannia) guyanensis
Resumo:
Background: Leishmania (Viannia) braziliensis is a parasite recognized as the most important etiologic agent of mucosal leishmaniasis (ML) in the New World. In Amazonia, seven different species of Leishmania, etiologic agents of human Cutaneous Leishmaniasis, have been described. Isolated cases of ML have been described for several different species of Leishmania: L. (V.) panamensis, L. (V.) guyanensis and L. (L.) amazonensis. Methodology: Leishmania species were characterized by polymerase chain reaction (PCR) of tissues taken from mucosal biopsies of Amazonian patients who were diagnosed with ML and treated at the Tropical Medicine Foundation of Amazonas (FMTAM) in Manaus, Amazonas state, Brazil. Samples were obtained retrospectively from the pathology laboratory and prospectively from patients attending the aforementioned tertiary care unit. Results: This study reports 46 cases of ML along with their geographical origin, 30 cases caused by L. (V.) braziliensis and 16 cases by L. (V.) guyanensis. This is the first record of ML cases in 16 different municipalities in the state of Amazonas and of simultaneous detection of both species in 4 municipalities of this state. It is also the first record of ML caused by L. (V.) guyanensis in the states of Para, Acre, and Rondonia and cases of ML caused by L. (V.) braziliensis in the state of Rondonia. Conclusions/Significance: L. (V.) braziliensis is the predominant species that causes ML in the Amazon region. However, contrary to previous studies, L. (V.) guyanensis is also a significant causative agent of ML within the region. The clinical and epidemiological expression of ML in the Manaus region is similar to the rest of the country, although the majority of ML cases are found south of the Amazon River.
Resumo:
ABSTRACTINTRODUCTION: In the Americas, mucosal leishmaniasis is primarily associated with infection by Leishmania (Viannia) braziliensis. However, Leishmania (Viannia) guyanensis is another important cause of this disease in the Brazilian Amazon. In this study, we aimed at detecting Leishmaniadeoxyribonucleic acid (DNA) within paraffin-embedded fragments of mucosal tissues, and characterizing the infecting parasite species.METHODS: We evaluated samples collected from 114 patients treated at a reference center in the Brazilian Amazon by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) analyses.RESULTS: Direct examination of biopsy imprints detected parasites in 10 of the 114 samples, while evaluation of hematoxylin and eosin-stained slides detected amastigotes in an additional 17 samples. Meanwhile, 31/114 samples (27.2%) were positive for Leishmania spp. kinetoplast deoxyribonucleic acid (kDNA) by PCR analysis. Of these, 17 (54.8%) yielded amplification of the mini-exon PCR target, thereby allowing for PCR-RFLP-based identification. Six of the samples were identified as L. (V.) braziliensis, while the remaining 11 were identified as L. (V.) guyanensis.CONCLUSIONS: The results of this study demonstrate the feasibility of applying molecular techniques for the diagnosis of human parasites within paraffin-embedded tissues. Moreover, our findings confirm that L. (V.) guyanensisis a relevant causative agent of mucosal leishmaniasis in the Brazilian Amazon.
Resumo:
Lutzomyia longipalpis females received single and mixed infections with Endotrypanum and Leishmania. Two biological parameters were analyzed: the percentage of infected females and the distribution of flagellates in the gut of the females. The principal comparisons were performed between (1) two strains of Endotrypanum, (2) cloned versus primary sample of one strain of Endotrypanum, (3) Endotrypanum versus Leishmania guyanensis, and (4) the pattern of flagellates behaviour by optical microscopy in females with single or mixed infection versus the identification of parasites isolated from digestive tracts by isoenzyme electrophoresis. Flagellates of Endotrypanum showed distinct patterns of infection suggesting that there is variation between and within strains. The distribution of Endotrypanum and L. guyanensis differed significantly in relation to the colonization of the stomodeal valve. In co-infection with L. guyanensis, a large number of flagellates were seen to be plentifully infecting the stomodeal valve in significantly more specimens than in females infected by Endotrypanum only. However, the electrophoretic profiles of isoenzymes of parasites recovered from all co-infected specimens corresponded to Endotrypanum. This suggests that the mere correlation sand fly infection-biochemical analysis of isolates may induce parasitological incorrect consideration.
Resumo:
In this study we have demonstrated the potential of two-dimensional electrophoresis (2DE)-based technologies as tools for characterization of the Leishmania proteome (the expressed protein complement of the genome). Standardized neutral range (pH 5-7) proteome maps of Leishmania (Viannia) guyanensis and Leishmania (Viannia) panamensis promastigotes were reproducibly generated by 2DE of soluble parasite extracts, which were prepared using lysis buffer containing urea and nonidet P-40 detergent. The Coomassie blue and silver nitrate staining systems both yielded good resolution and representation of protein spots, enabling the detection of approximately 800 and 1,500 distinct proteins, respectively. Several reference protein spots common to the proteomes of all parasite species/strains studied were isolated and identified by peptide mass spectrometry (LC-ES-MS/MS), and bioinformatics approaches as members of the heat shock protein family, ribosomal protein S12, kinetoplast membrane protein 11 and a hypothetical Leishmania-specific 13 kDa protein of unknown function. Immunoblotting of Leishmania protein maps using a monoclonal antibody resulted in the specific detection of the 81.4 kDa and 77.5 kDa subunits of paraflagellar rod proteins 1 and 2, respectively. Moreover, differences in protein expression profiles between distinct parasite clones were reproducibly detected through comparative proteome analyses of paired maps using image analysis software. These data illustrate the resolving power of 2DE-based proteome analysis. The production and basic characterization of good quality Leishmania proteome maps provides an essential first step towards comparative protein expression studies aimed at identifying the molecular determinants of parasite drug resistance and virulence, as well as discovering new drug and vaccine targets.
Resumo:
The development of Colombian Leishmania species of the subgenus Viannia in Lutzomyia intermedia was similar to that observed with Brazilian Le. (V.) braziliensis: colonization of the pylorus by paramastigotes; promastigotes in the midgut and massive infection of stomodeal valve. Difference was observed in the number of paramastigotes colonizing the pylorus, which was smaller in Colombian Leishmania species than Brazilian Le. braziliensis.
Resumo:
The incidence of cutaneous leishmaniasis (CL) is increasing and there is limited surveillance of Leishmania species throughout the world. We identified the species associated with CL in a region of Amazonia, an area recognized for its Leishmania species variability. Clinical findings were analyzed and correlated with the species identified in 93 patients. PCR assays were based on small subunit ribosomal DNA (SSU-rDNA) and G6PD, and were performed in a laboratory located 3,500 km away. Leishmania (V.) braziliensis was identified in 53 patients (57%). The other 40 patients (43%) carried a different species (including six cases of L (L) amazonensis). Molecular methods can be employed, using special media, to allow transport to distant laboratories. L (V.) braziliensis is the most common species in the area of Para. The location of ulcers can suggest CL species (C) 2010 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.
Resumo:
There is little available information regarding the infectivity of New World Leishmania species, particularly those from the Amazonian Brazil, where there are six species of the subgenus Viannia causing American cutaneous leishmaniasis (ACL). The aim of this study was to compare, in vitro, the potential infectivity of the following Leishmania (Viannia) spp.: L. (V.) braziliensis from localized cutaneous leishmaniasis (LCL) and mucocutaneous leishmaniasis (MCL) patients, L. (V.) guyanensis, L. (V.) shawi, L. (V.) lainsoni and L. (V.) naiffi from LCL patients only, in cultured BALB/c mice peritoneal macrophage, as well as the production of NO by the infected cells. The infectivity of parasites was expressed by the infection index and, the nitric oxide (NO) production in the macrophage culture supernatant was measured by the Griess method. It was found that L. (V.) braziliensis from MCL, the more severe form of disease, showed the highest (p <= 0.05) infection index (397), as well as the lowest NO production (2.15 mu M) compared with those of other species. In contrast, L. (V.) naiffi which is less pathogenic for the human showed the lowest infection index (301) and the highest NO production (4.11 mu M). These results demonstrated a negative correlation between the infectivity and the ability of these parasites to escape from the microbicidal activity of the host cell.
Resumo:
RESUME En Amérique Centrale et en Amérique du Sud, la leishmaniose cutanéo-muqueuse (LCM) est provoquée par le protozoaire Leishmania du sous-genre Viannia dont font partie L. (V.) braziliensis, L. (V.) panamensis et L. (V.) guyanensis. Dans la LCM, après guérison apparente de la lésion primitive, des lésions secondaires peuvent apparaître dues à la migration de l'infection à partir du site d'inoculation vers les muqueuses de l'ororhino-pharynx. Ce type de dissémination, communément appelé métastase, peut se produire plusieurs années après la guérison de la lésion cutanée initiale, et est un facteur majeur contribuant à la morbidité associée à la LCM. L'expression reproductible de l'activité métastatique au sein de populations discrètes de leishmanies chez le hamster fournit un modèle expérimental permettant d'étudier le degré de virulence du parasite. Nous avons utilisé des clones de L. (V.) guyanensis présentant des phénotypes stables allant d'un caractère hautement métastatique (M+) à non-métastatique (M-) comme outils pour mettre en évidence des facteurs spécifiques liés à la métastase chez les leishmanies du Nouveau Monde. Des analyses protéomiques comparatives utilisant l'électrophorèse bidimensionnelle sur gel de polyacrylamide couplée à de la spectrométrie de masse ont permis l'identification de plusieurs formes de la tryparedoxine peroxidase (TXNPx) en tant que polypeptides associés au phénotype métastatique. TXNPx, une enzyme de la famille des peroxiredoxines (Prxs), protéines antioxydantes, fonctionne comme la dernière peroxydase d'une cascade d'oxydoréductases qui réduit le peroxyde d'hydrogène aux dépens de NADPH. Toutes les Prxs sont caractérisées par un (1-Cys Prx) ou par deux résidus cystéines (2-Cys Prx), respectivement placés dans un environnement structurel conservé de la protéine et sont centrales dans la réaction catalytique. Des immuno-empreintes (« immunoblotting ») ont révélé que TXNPx est présente sous forme dimérique dans les promastigotes (M+) alors que dans les promastigotes, (M-) TXNPx est présente sous forme monomérique et dimérique. Cette caractéristique spécifique de dimérisation pourrait expliquer les différentes activités enzymatiques observées entre les deux promastigotes (M+) et (M-) en présence de peroxyde d'hydrogène ainsi que leur différence de survie et de charge parasitaire à l'intérieur des macrophages. Par conséquent, le processus métastatique pourrait être lié à la capacité du parasite à échapper efficacement aux défenses microbicides de la cellule hôte. ABSTRACT In South and Central America, protozoan parasites of the Leishmania Viannia subgenus including L. (V.) braziliensis, L. (V.) guyanensis and L. (V). panamensis cause mucocutaneous leishmaniasis (MCL). In MCL, after apparent cure of the primary lesion, secondary lesions may appear in the nasopharyngeal tissues of the infected host due to dissemination of the infection from the inoculation site. This type of dissemination, known as metastasis, can occur several years after healing of the original cutaneous lesion, and is a major contributory factor to the morbidity associated with MCL. The reproducible expression of metastasis by discrete populations of Leishmania parasites in hamsters provides an experimental model to examine the expression of parasite virulence. We used laboratory clones of L. (V.) guyanensis with stable phenotypes ranging from highly metastatic (M+) to non-metastatic (M-) as tools for the discovery of specific factors associated with metastasis in New World Leishmania species. Comparative proteome analyses via 2D-electrophoresis (2-DE) coupled with mass spectrometry (MS) enabled the identification of various isoforms of tryparedoxin peroxidase (TXNPx) as polypeptides associated with the metastatic phenotype. TXNPx, an enzyme related to the antioxidant peroxiredoxin family (Prx) functions as the terminal peroxidase of a redox cascade that reduces hydroperoxides by NADPH. All Prxs are characterized by one (1-Cys Prx) or two cysteine residue(s) (2-Cys Prx), respectively, located in a conserved structural environment of the protein which are central for the catalytic reaction. Immunoblotting analysis revealed that, under non-reducing denaturing conditions, TXNPx is present in dimeric forms in (M+) promastigotes, whereas in (M-) promastigotes, both monomeric and dimeric forms are found. This specific dimerization feature may explain the different enzymatic activities of both (M+) and (M-) promastigote parasites in the presence of H2O2 and their difference in survival and parasite load inside macrophages. Therefore, the metastatic process could be related to the ability of the parasite to efficiently evade the microbicidal effect of the host cell.
Resumo:
In the Brazilian Amazon, American tegumentary leishmaniasis (ATL) is endemic and presents a wide spectrum of clinical manifestations due, in part, to the circulation of at least seven Leishmaniaspecies. Few reports of Leishmania (Viannia) naiffiinfection suggest that its occurrence is uncommon and the reported cases present a benign clinical course and a good response to treatment. This study aimed to strengthen the clinical and epidemiological importance of L. (V.) naiffiin the Amazon Region (Manaus, state of Amazonas) and to report therapeutic failure in patients infected with this species. Thirty Leishmania spp samples isolated from cutaneous lesions were characterised by multilocus enzyme electrophoresis. As expected, the most common species was Leishmania (V.) guyanensis (20 cases). However, a relevant number ofL. (V.) naiffi patients (8 cases) was observed, thus demonstrating that this species is not uncommon in the region. No patient infected withL. (V.) naiffievolved to spontaneous cure until the start of treatment, which indicated that this species may not have a self-limiting nature. In addition, two of the patients experienced a poor response to antimonial or pentamidine therapy. Thus, either ATL cases due to L. (V.) naifficannot be as uncommon as previously thought or this species is currently expanding in this region.
Resumo:
The miniexon gene has a central role in the processing of polycistronic pre-mRNA of kinetoplastids. It is added to the 5` extremity of each mRNA, supplying the 5`-capped structure to the molecule. Previous studies in Leishmania (Leishmania) major showed that the overexpression of the miniexon array attenuates the Virulence of the parasite in in vivo assays. The results presented here extend those findings to Vionnia subgenus. Leishmania (Vionnia) braziliensis was transfected with a cosmid harboring a tandem array of one hundred miniexon gene copies and then characterized by Northern blot analysis. The overexpression of the exogenous gene was confirmed and its effect on the virulence of L (V.) braziliensis was investigated in hamsters. In BALB/c mice we could not detect parasites during the course of 15 weeks of infection. In addition, hamsters infected with transfectants overexpressing the miniexon gene exhibited only a minor footpad swelling of late onset and failed to develop progressive lesion, these attenuated parasites could be recovered from the inoculation site 1 year after infection. The persistence of parasites in the host indicates that a stable line overexpressing the miniexon may be tested as live vaccine against leishmaniasis. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Leishmania (Viannia) shawl was recently characterized and few studies concerning modifications in cellular and humoral immune responses in experimental leishmaniasis have been conducted. In this work, immunopathological changes induced by L. shawl in chronically infected BALB/c mice were investigated. Infected BALB/c mice developed increased lesion size associated with strong inflammatory infiltrate diffusely distributed in the dermis, with highly infected macrophages. The humoral immune response was predominantly directed toward the IgG1 isotype. The functional activity of CD4(+) and CD8(+) T cells showed significantly increased TNF-alpha mRNA levels associated with reduced IFN-gamma expression by CD4(+) T cells and the double negative (dn) CD4CD8 cell subset. High IL-4 levels expressed by CD8(+) T cells and dnCD4CD8 and TGF-beta by CD4(+) and CD8(+) T cells were detected, while IL-10 was highly expressed by all three cell subpopulations. Taken together, these results show an evident imbalance between TNF-alpha and IFN-gamma that is unfavorable to amastigote replication control. Furthermore, L. shawi seems to regulate different cell populations to express deactivating cytokines to avoid its own destruction. This study indicates BALB/c mice as a potentially good experimental model for further studies on American cutaneous leishmaniosis caused by L. shawi. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Since the first description of Leishmania (Viannia) shawi, few studies were performed with this parasite. In the present work, the in vivo and ex vivo behavior of L. (Viannia) shawi infection was studied using murine model. Peritoneal macrophages from BALB/c and C57BL/6 mice were infected with promastigotes in the stationary phase of growth; after 24 h, the infection index and nitric oxide (NO) levels in the supernatant of the cultures were analyzed. BALB/c and C57BL/6 mice were infected into the hind footpad, and at each 2 weeks, mice were sacrificed, and the histological changes of the skin inoculation site, parasitism, and humoral immune responses were evaluated during 8 weeks. Ex vivo experiments showed that macrophages of BALB/c presented higher infection index and lesser NO levels than macrophages of C57BL/6. In vivo experiments showed that BALB/c presented higher lesion size than C57BL/6 mice; similarly, the histopathological changes and the parasitism in skin were more exacerbate in BALB/c mice. In draining lymph nodes, the main change was increase of germinative centers, and parasites were detected from 6 weeks pi onwards in both mice strain. IgG was detected in BALB/c mice from 4 weeks, while in C57BL/6, from 6 weeks pi onwards. Taken together, these results indicate that BALB/c showed a classical behavior of susceptibility when compared to C57BL/6 mice.
Resumo:
The present study aimed to evaluate the effects of immunization with soluble amastigote (AmaAg) and promastigote (ProAg) antigens from Leishmania (Viannia) shawi on the course of infection in BALB/c mice. After immunization with AmaAg, the challenged group showed greater lesion size and parasite load in the skin and lymph nodes, associated with diminished interleukin (IL)-2, IL-4, IL-10, interferon (IFN)-gamma and nitrate levels in the supernatant of lymph node cell cultures, together with increases in transforming growth factor (TGF)-beta concentrations and humoral immune response. In contrast, immunization with ProAg led to smaller lesion size with reduced numbers of viable parasites in the skin. Protection was associated with increases in IL-12, IFN-gamma, TGF-beta and nitrates and decreases in IL-4 and IL-10 levels. Concerning humoral immune response, a significant reduction in anti-leishmania immunoglobulin G was verified in the ProAg-challenged group. Analysis of these results suggests that AmaAg induced a suppressive cellular immune response in mice, favouring the spread of infection, whereas ProAg induced partial protection associated with increased cellular immune response.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Biotecnologia.