208 resultados para Lebesgue, Integrais de


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Matemática Universitária - IGCE

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nesta Tese desenvolvemos várias abordagens "Darbouxianas"para buscar integrais primeiras (elementares e Liouvillianas) de equações diferenciais ordinárias de segunda ordem (2EDOs) racionais. Os algoritmos (semi-algoritmos) que desenvolvemos seguem a linha do trabalho de Prelle e Singer. Basicamente, os métodos que buscam integrais primeiras elementares são uma extensão da técnica desenvolvida por Prelle e Singer para encontrar soluções elementares de equações diferenciais ordinárias de primeira ordem (1EDOs) racionais. O procedimento que lida com 2EDOs racionais que apresentam integrais primeiras Liouvillianas é baseado em uma extensão ao nosso método para encontrar soluções Liouvillianas de 1EDOs racionais. A ideia fundamental por tras do nosso trabalho consiste em que os fatores integrantes para 1-formas polinomiais geradas pela diferenciação de funções elementares e Liouvillianas são formados por certos polinômios denominados polinômios de Darboux. Vamos mostrar como combinar esses polinômios de Darboux para construir fatores integrantes e, de posse deles, determinar integrais primeiras. Vamos ainda discutir algumas implementações computacionais dos semi-algoritmos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modelos de evolução populacional são há muito tempo assunto de grande relevância, principalmente quando a população de estudo é composta por vetores de doenças. Tal importância se deve ao fato de existirem milhares de doenças que são propagadas por espécies específicas e conhecer como tais populações se comportam é vital quando pretende-se criar políticas públicas para controlar a sua proliferação. Este trabalho descreve um problema de evolução populacional difusivo com armadilhas locais e tempo de reprodução atrasado, o problema direto descreve a densidade de uma população uma vez conhecidos os parâmetros do modelo onde sua solução é obtida por meio da técnica de transformada integral generalizada, uma técnica numérico-analítica. Porém a solução do problema direto, por si só, não permite a simulação computacional de uma população em uma aplicação prática, uma vez que os parâmetros do modelo variam de população para população e precisam, portanto, ter seus valores conhecidos. Com o objetivo de possibilitar esta caracterização, o presente trabalho propõe a formulação e solução do problema inverso, estimando os parâmetros do modelo a partir de dados da população utilizando para tal tarefa dois métodos Bayesianos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nesta tese, consideram-se operadores integrais singulares com a acção extra de um operador de deslocacamento de Carleman e com coeficientes em diferentes classes de funções essencialmente limitadas. Nomeadamente, funções contínuas por troços, funções quase-periódicas e funções possuíndo factorização generalizada. Nos casos dos operadores integrais singulares com deslocamento dado pelo operador de reflexão ou pelo operador de salto no círculo unitário complexo, obtêm-se critérios para a propriedade de Fredholm. Para os coeficientes contínuos, uma fórmula do índice de Fredholm é apresentada. Estes resultados são consequência das relações de equivalência explícitas entre aqueles operadores e alguns operadores adicionais, tais como o operador integral singular, operadores de Toeplitz e operadores de Toeplitz mais Hankel. Além disso, as relações de equivalência permitem-nos obter um critério de invertibilidade e fórmulas para os inversos laterais dos operadores iniciais com coeficientes factorizáveis. Adicionalmente, aplicamos técnicas de análise numérica, tais como métodos de colocação de polinómios, para o estudo da dimensão do núcleo dos dois tipos de operadores integrais singulares com coeficientes contínuos por troços. Esta abordagem permite também a computação do inverso no sentido Moore-Penrose dos operadores principais. Para operadores integrais singulares com operadores de deslocamento do tipo Carleman preservando a orientação e com funções contínuas como coeficientes, são obtidos limites superiores da dimensão do núcleo. Tal é implementado utilizando algumas estimativas e com a ajuda de relações (explícitas) de equivalência entre operadores. Focamos ainda a nossa atenção na resolução e nas soluções de uma classe de equações integrais singulares com deslocamento que não pode ser reduzida a um problema de valor de fronteira binomial. De forma a atingir os objectivos propostos, foram utilizadas projecções complementares e identidades entre operadores. Desta forma, as equações em estudo são associadas a sistemas de equações integrais singulares. Estes sistemas são depois analisados utilizando um problema de valor de fronteira de Riemann. Este procedimento tem como consequência a construção das soluções das equações iniciais a partir das soluções de problemas de valor de fronteira de Riemann. Motivados por uma grande diversidade de aplicações, estendemos a definição de operador integral de Cauchy para espaços de Lebesgue sobre grupos topológicos. Assim, são investigadas as condições de invertibilidade dos operadores integrais neste contexto.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis we consider Wiener-Hopf-Hankel operators with Fourier symbols in the class of almost periodic, semi-almost periodic and piecewise almost periodic functions. In the first place, we consider Wiener-Hopf-Hankel operators acting between L2 Lebesgue spaces with possibly different Fourier matrix symbols in the Wiener-Hopf and in the Hankel operators. In the second place, we consider these operators with equal Fourier symbols and acting between weighted Lebesgue spaces Lp(R;w), where 1 < p < 1 and w belongs to a subclass of Muckenhoupt weights. In addition, singular integral operators with Carleman shift and almost periodic coefficients are also object of study. The main purpose of this thesis is to obtain regularity properties characterizations of those classes of operators. By regularity properties we mean those that depend on the kernel and cokernel of the operator. The main techniques used are the equivalence relations between operators and the factorization theory. An invertibility characterization for the Wiener-Hopf-Hankel operators with symbols belonging to the Wiener subclass of almost periodic functions APW is obtained, assuming that a particular matrix function admits a numerical range bounded away from zero and based on the values of a certain mean motion. For Wiener-Hopf-Hankel operators acting between L2-spaces and with possibly different AP symbols, criteria for the semi-Fredholm property and for one-sided and both-sided invertibility are obtained and the inverses for all possible cases are exhibited. For such results, a new type of AP factorization is introduced. Singular integral operators with Carleman shift and scalar almost periodic coefficients are also studied. Considering an auxiliar and simpler operator, and using appropriate factorizations, the dimensions of the kernels and cokernels of those operators are obtained. For Wiener-Hopf-Hankel operators with (possibly different) SAP and PAP matrix symbols and acting between L2-spaces, criteria for the Fredholm property are presented as well as the sum of the Fredholm indices of the Wiener-Hopf plus Hankel and Wiener-Hopf minus Hankel operators. By studying dependencies between different matrix Fourier symbols of Wiener-Hopf plus Hankel operators acting between L2-spaces, results about the kernel and cokernel of those operators are derived. For Wiener-Hopf-Hankel operators acting between weighted Lebesgue spaces, Lp(R;w), a study is made considering equal scalar Fourier symbols in the Wiener-Hopf and in the Hankel operators and belonging to the classes of APp;w, SAPp;w and PAPp;w. It is obtained an invertibility characterization for Wiener-Hopf plus Hankel operators with APp;w symbols. In the cases for which the Fourier symbols of the operators belong to SAPp;w and PAPp;w, it is obtained semi-Fredholm criteria for Wiener-Hopf-Hankel operators as well as formulas for the Fredholm indices of those operators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta tese considera a transmissão de conceitos matemáticos para Portugal no século XIX, particularmente no campo dos Integrais Elípticos e das Funções Elípticas, tal como foi realizado no trabalho de António Zeferino Cândido. Depois de uma introdução histórica geral ao assunto no capítulo 1, o capítulo 2 estuda a vida de António Zeferino Cândido da Piedade. Ele foi, talvez, o primeiro matemático português a publicar uma tese sobre este assunto. A parte principal, isto é, o capítulo 3, é dedicada à análise do seu trabalho “Integraes e Funcções Ellipticas”. Mostra detalhes da sua abordagem baseada, não só, no livro dos autores Franceses Briot e Bouquet, mas também do autor alemão Schloemilch, o que reflecte as mudanças que ocorreram naquela época na liderança matemática na Europa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de mestre em Engenharia Civil

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dans ce mémoire, nous traiterons du théorème de Lebesgue, un des plus frappants et des plus importants de l'analyse mathématique ; à savoir qu'une fonction à variation bornée est dérivable presque partout. Le but de ce travail est de fournir, à part la démonstration souvent proposée dans les cours de la théorie de la mesure, d'autres démonstrations élaborées avec des outils mathématiques plus simples. Ma contribution a consisté essentiellement à détailler et à compléter ces démonstrations, puis à inclure la plupart des figures pour une meilleure lisibilité. Nous allons maintenant, pour ce théorème qui se présente sous d'autres variantes, en proposer l'historique et trois démonstrations différentes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let λ1,…,λn be real numbers in (0,1) and p1,…,pn be points in Rd. Consider the collection of maps fj:Rd→Rd given by fj(x)=λjx+(1−λj)pj. It is a well known result that there exists a unique nonempty compact set Λ⊂Rd satisfying Λ=∪nj=1fj(Λ). Each x∈Λ has at least one coding, that is a sequence (ϵi)∞i=1 ∈{1,…,n}N that satisfies limN→∞fϵ1…fϵN(0)=x. We study the size and complexity of the set of codings of a generic x∈Λ when Λ has positive Lebesgue measure. In particular, we show that under certain natural conditions almost every x∈Λ has a continuum of codings. We also show that almost every x∈Λ has a universal coding. Our work makes no assumptions on the existence of holes in Λ and improves upon existing results when it is assumed Λ contains no holes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste material é apresentado primeiramente um teorema muito importante que é o teorema do valor médio, com exemplos de aplicação. Na sequência temos a definição de antiderivada ou primitiva de uma função. No segundo tópico segue a definição de integral indefinida e a apresentação de algumas integrais importantes e básicas. Uma tabela de integrais básicas também é disponibilizada. Finalizando, foram listados propriedades e exemplos de integrais.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Na este capítulo, é apresentada inicialmente a definição formal de integral, mostrando que a mesma calcula a área sob o gráfico de uma função em um intervalo [a, b]. Na sequência são listadas as propriedades das integrais sem demonstração e também algumas convenções que serão utilizadas. A unidade também traz o teorema fundamental do cálculo e exemplo do cálculo de uma área usando a integral. Também são apresentadas as técnicas de integração por substituição e a técnica de integração por partes, além de vários exemplos resolvidos passo a passo. Finalizando, temos algumas integrais envolvendo funções trigonométricas, fórmulas de redução ou de recorrência e substituições trigonométricas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este capítulo começa com integração de funções racionais, ou seja, funções da forma f(x)/g(x) e a resolução de um exemplo passo a passo. O primeiro exemplo mostra que se o grau de f(x) for maior que o grau de g(x), então a integral da função racional f(x)/g(x) se transforma numa integral de simples resolução, através da divisão de polinômios. Portanto a unidade mostra que é preciso apenas estudar integrais de funções racionais próprias, isto é, funções racionais em que o grau do numerador é menor que o grau do denominador. Isto é desenvolvido através da decomposição de frações racionais em frações parciais. Na sequência é apresentado passo a passo como fazer tal decomposição em três casos distintos. E no último tópico são detalhadas algumas aplicações das integrais definidas: área de uma região plana; média ou valor médio de uma função; volume de um sólido; área de uma superfície de revolução.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Capítulo 8 do Livro Noções de "Cálculo Diferencial e Integral para Tecnólogos"