873 resultados para Learning method
Resumo:
Dissertação de mestrado integrado em Psicologia
Resumo:
To enhance the global search ability of population based incremental learning (PBIL) methods, it is proposed that multiple probability vectors are to be included on available PBIL algorithms. The strategy for updating those probability vectors and the negative learning and mutation operators are thus re-defined correspondingly. Moreover, to strike the best tradeoff between exploration and exploitation searches, an adaptive updating strategy for the learning rate is designed. Numerical examples are reported to demonstrate the pros and cons of the newly implemented algorithm.
Resumo:
To enhance the global search ability of Population Based Incremental Learning (PBIL) methods, It Is proposed that multiple probability vectors are to be Included on available PBIL algorithms. As a result, the strategy for updating those probability vectors and the negative learning and mutation operators are redefined as reported. Numerical examples are reported to demonstrate the pros and cons of the newly Implemented algorithm. ©2006 IEEE.
Resumo:
Abstract Background Educational computer games are examples of computer-assisted learning objects, representing an educational strategy of growing interest. Given the changes in the digital world over the last decades, students of the current generation expect technology to be used in advancing their learning requiring a need to change traditional passive learning methodologies to an active multisensory experimental learning methodology. The objective of this study was to compare a computer game-based learning method with a traditional learning method, regarding learning gains and knowledge retention, as means of teaching head and neck Anatomy and Physiology to Speech-Language and Hearing pathology undergraduate students. Methods Students were randomized to participate to one of the learning methods and the data analyst was blinded to which method of learning the students had received. Students’ prior knowledge (i.e. before undergoing the learning method), short-term knowledge retention and long-term knowledge retention (i.e. six months after undergoing the learning method) were assessed with a multiple choice questionnaire. Students’ performance was compared considering the three moments of assessment for both for the mean total score and for separated mean scores for Anatomy questions and for Physiology questions. Results Students that received the game-based method performed better in the pos-test assessment only when considering the Anatomy questions section. Students that received the traditional lecture performed better in both post-test and long-term post-test when considering the Anatomy and Physiology questions. Conclusions The game-based learning method is comparable to the traditional learning method in general and in short-term gains, while the traditional lecture still seems to be more effective to improve students’ short and long-term knowledge retention.
Resumo:
Dissertação de Mestrado, Ciências da Linguagem, Faculdade de Ciências Humanas e Sociais, Universidade do Algarve, 2010
Resumo:
Background Information:The incorporation of distance learning activities by institutions of higher education is considered an important contribution to create new opportunities for teaching at both, initial and continuing training. In Medicine and Nursing, several papers illustrate the adaptation of technological components and teaching methods are prolific, however, when we look at the Pharmaceutical Education area, the examples are scarce. In that sense this project demonstrates the implementation and assessment of a B-Learning Strategy for Therapeutics using a “case based learning” approach. Setting: Academic Pharmacy Methods:This is an exploratory study involving 2nd year students of the Pharmacy Degree at the School of Allied Health Sciences of Oporto. The study population consists of 61 students, divided in groups of 3-4 elements. The b-learning model was implemented during a time period of 8 weeks. Results:A B-learning environment and digital learning objects were successfully created and implemented. Collaboration and assessment techniques were carefully developed to ensure the active participation and fair assessment of all students. Moodle records show a consistent activity of students during the assignments. E-portfolios were also developed using Wikispaces, which promoted reflective writing and clinical reasoning. Conclusions:Our exploratory study suggests that the “case based learning” method can be successfully combined with the technological components to create and maintain a feasible online learning environment for the teaching of therapeutics.
Resumo:
High-content analysis has revolutionized cancer drug discovery by identifying substances that alter the phenotype of a cell, which prevents tumor growth and metastasis. The high-resolution biofluorescence images from assays allow precise quantitative measures enabling the distinction of small molecules of a host cell from a tumor. In this work, we are particularly interested in the application of deep neural networks (DNNs), a cutting-edge machine learning method, to the classification of compounds in chemical mechanisms of action (MOAs). Compound classification has been performed using image-based profiling methods sometimes combined with feature reduction methods such as principal component analysis or factor analysis. In this article, we map the input features of each cell to a particular MOA class without using any treatment-level profiles or feature reduction methods. To the best of our knowledge, this is the first application of DNN in this domain, leveraging single-cell information. Furthermore, we use deep transfer learning (DTL) to alleviate the intensive and computational demanding effort of searching the huge parameter's space of a DNN. Results show that using this approach, we obtain a 30% speedup and a 2% accuracy improvement.
Resumo:
An active learning method is proposed for the semi-automatic selection of training sets in remote sensing image classification. The method adds iteratively to the current training set the unlabeled pixels for which the prediction of an ensemble of classifiers based on bagged training sets show maximum entropy. This way, the algorithm selects the pixels that are the most uncertain and that will improve the model if added in the training set. The user is asked to label such pixels at each iteration. Experiments using support vector machines (SVM) on an 8 classes QuickBird image show the excellent performances of the methods, that equals accuracies of both a model trained with ten times more pixels and a model whose training set has been built using a state-of-the-art SVM specific active learning method
Resumo:
This paper shows how instructors can use the problem‐based learning method to introduce producer theory and market structure in intermediate microeconomics courses. The paper proposes a framework where different decision problems are presented to students, who are asked to imagine that they are the managers of a firm who need to solve a problem in a particular business setting. In this setting, the instructors’ role isto provide both guidance to facilitate student learning and content knowledge on a just‐in‐time basis
Resumo:
In this paper, we propose two active learning algorithms for semiautomatic definition of training samples in remote sensing image classification. Based on predefined heuristics, the classifier ranks the unlabeled pixels and automatically chooses those that are considered the most valuable for its improvement. Once the pixels have been selected, the analyst labels them manually and the process is iterated. Starting with a small and nonoptimal training set, the model itself builds the optimal set of samples which minimizes the classification error. We have applied the proposed algorithms to a variety of remote sensing data, including very high resolution and hyperspectral images, using support vector machines. Experimental results confirm the consistency of the methods. The required number of training samples can be reduced to 10% using the methods proposed, reaching the same level of accuracy as larger data sets. A comparison with a state-of-the-art active learning method, margin sampling, is provided, highlighting advantages of the methods proposed. The effect of spatial resolution and separability of the classes on the quality of the selection of pixels is also discussed.
Resumo:
The main objective of this letter is to formulate a new approach of learning a Mahalanobis distance metric for nearest neighbor regression from a training sample set. We propose a modified version of the large margin nearest neighbor metric learning method to deal with regression problems. As an application, the prediction of post-operative trunk 3-D shapes in scoliosis surgery using nearest neighbor regression is described. Accuracy of the proposed method is quantitatively evaluated through experiments on real medical data.
Resumo:
One major component of power system operation is generation scheduling. The objective of the work is to develop efficient control strategies to the power scheduling problems through Reinforcement Learning approaches. The three important active power scheduling problems are Unit Commitment, Economic Dispatch and Automatic Generation Control. Numerical solution methods proposed for solution of power scheduling are insufficient in handling large and complex systems. Soft Computing methods like Simulated Annealing, Evolutionary Programming etc., are efficient in handling complex cost functions, but find limitation in handling stochastic data existing in a practical system. Also the learning steps are to be repeated for each load demand which increases the computation time.Reinforcement Learning (RL) is a method of learning through interactions with environment. The main advantage of this approach is it does not require a precise mathematical formulation. It can learn either by interacting with the environment or interacting with a simulation model. Several optimization and control problems have been solved through Reinforcement Learning approach. The application of Reinforcement Learning in the field of Power system has been a few. The objective is to introduce and extend Reinforcement Learning approaches for the active power scheduling problems in an implementable manner. The main objectives can be enumerated as:(i) Evolve Reinforcement Learning based solutions to the Unit Commitment Problem.(ii) Find suitable solution strategies through Reinforcement Learning approach for Economic Dispatch. (iii) Extend the Reinforcement Learning solution to Automatic Generation Control with a different perspective. (iv) Check the suitability of the scheduling solutions to one of the existing power systems.First part of the thesis is concerned with the Reinforcement Learning approach to Unit Commitment problem. Unit Commitment Problem is formulated as a multi stage decision process. Q learning solution is developed to obtain the optimwn commitment schedule. Method of state aggregation is used to formulate an efficient solution considering the minimwn up time I down time constraints. The performance of the algorithms are evaluated for different systems and compared with other stochastic methods like Genetic Algorithm.Second stage of the work is concerned with solving Economic Dispatch problem. A simple and straight forward decision making strategy is first proposed in the Learning Automata algorithm. Then to solve the scheduling task of systems with large number of generating units, the problem is formulated as a multi stage decision making task. The solution obtained is extended in order to incorporate the transmission losses in the system. To make the Reinforcement Learning solution more efficient and to handle continuous state space, a fimction approximation strategy is proposed. The performance of the developed algorithms are tested for several standard test cases. Proposed method is compared with other recent methods like Partition Approach Algorithm, Simulated Annealing etc.As the final step of implementing the active power control loops in power system, Automatic Generation Control is also taken into consideration.Reinforcement Learning has already been applied to solve Automatic Generation Control loop. The RL solution is extended to take up the approach of common frequency for all the interconnected areas, more similar to practical systems. Performance of the RL controller is also compared with that of the conventional integral controller.In order to prove the suitability of the proposed methods to practical systems, second plant ofNeyveli Thennal Power Station (NTPS IT) is taken for case study. The perfonnance of the Reinforcement Learning solution is found to be better than the other existing methods, which provide the promising step towards RL based control schemes for practical power industry.Reinforcement Learning is applied to solve the scheduling problems in the power industry and found to give satisfactory perfonnance. Proposed solution provides a scope for getting more profit as the economic schedule is obtained instantaneously. Since Reinforcement Learning method can take the stochastic cost data obtained time to time from a plant, it gives an implementable method. As a further step, with suitable methods to interface with on line data, economic scheduling can be achieved instantaneously in a generation control center. Also power scheduling of systems with different sources such as hydro, thermal etc. can be looked into and Reinforcement Learning solutions can be achieved.
Resumo:
We are investigating how to program robots so that they learn from experience. Our goal is to develop principled methods of learning that can improve a robot's performance of a wide range of dynamic tasks. We have developed task-level learning that successfully improves a robot's performance of two complex tasks, ball-throwing and juggling. With task- level learning, a robot practices a task, monitors its own performance, and uses that experience to adjust its task-level commands. This learning method serves to complement other approaches, such as model calibration, for improving robot performance.
Resumo:
This paper shows how instructors can use the problem‐based learning method to introduce producer theory and market structure in intermediate microeconomics courses. The paper proposes a framework where different decision problems are presented to students, who are asked to imagine that they are the managers of a firm who need to solve a problem in a particular business setting. In this setting, the instructors’ role is to provide both guidance to facilitate student learning and content knowledge on a just‐in‐time basis
Resumo:
A connection between a fuzzy neural network model with the mixture of experts network (MEN) modelling approach is established. Based on this linkage, two new neuro-fuzzy MEN construction algorithms are proposed to overcome the curse of dimensionality that is inherent in the majority of associative memory networks and/or other rule based systems. The first construction algorithm employs a function selection manager module in an MEN system. The second construction algorithm is based on a new parallel learning algorithm in which each model rule is trained independently, for which the parameter convergence property of the new learning method is established. As with the first approach, an expert selection criterion is utilised in this algorithm. These two construction methods are equivalent in their effectiveness in overcoming the curse of dimensionality by reducing the dimensionality of the regression vector, but the latter has the additional computational advantage of parallel processing. The proposed algorithms are analysed for effectiveness followed by numerical examples to illustrate their efficacy for some difficult data based modelling problems.