773 resultados para Learning from text
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
The general aim of the thesis was to study university students’ learning from the perspective of regulation of learning and text processing. The data were collected from the two academic disciplines of medical and teacher education, which share the features of highly scheduled study, a multidisciplinary character, a complex relationship between theory and practice and a professional nature. Contemporary information society poses new challenges for learning, as it is not possible to learn all the information needed in a profession during a study programme. Therefore, it is increasingly important to learn how to think and learn independently, how to recognise gaps in and update one’s knowledge and how to deal with the huge amount of constantly changing information. In other words, it is critical to regulate one’s learning and to process text effectively. The thesis comprises five sub-studies that employed cross-sectional, longitudinal and experimental designs and multiple methods, from surveys to eye tracking. Study I examined the connections between students’ study orientations and the ways they regulate their learning. In total, 410 second-, fourth- and sixth-year medical students from two Finnish medical schools participated in the study by completing a questionnaire measuring both general study orientations and regulation strategies. The students were generally deeply oriented towards their studies. However, they regulated their studying externally. Several interesting and theoretically reasonable connections between the variables were found. For instance, self-regulation was positively correlated with deep orientation and achievement orientation and was negatively correlated with non-commitment. However, external regulation was likewise positively correlated with deep orientation and achievement orientation but also with surface orientation and systematic orientation. It is argued that external regulation might function as an effective coping strategy in the cognitively loaded medical curriculum. Study II focused on medical students’ regulation of learning and their conceptions of the learning environment in an innovative medical course where traditional lectures were combined wth problem-based learning (PBL) group work. First-year medical and dental students (N = 153) completed a questionnaire assessing their regulation strategies of learning and views about the PBL group work. The results indicated that external regulation and self-regulation of the learning content were the most typical regulation strategies among the participants. In line with previous studies, self-regulation wasconnected with study success. Strictly organised PBL sessions were not considered as useful as lectures, although the students’ views of the teacher/tutor and the group were mainly positive. Therefore, developers of teaching methods are challenged to think of new solutions that facilitate reflection of one’s learning and that improve the development of self-regulation. In Study III, a person-centred approach to studying regulation strategies was employed, in contrast to the traditional variable-centred approach used in Study I and Study II. The aim of Study III was to identify different regulation strategy profiles among medical students (N = 162) across time and to examine to what extent these profiles predict study success in preclinical studies. Four regulation strategy profiles were identified, and connections with study success were found. Students with the lowest self-regulation and with an increasing lack of regulation performed worse than the other groups. As the person-centred approach enables us to individualise students with diverse regulation patterns, it could be used in supporting student learning and in facilitating the early diagnosis of learning difficulties. In Study IV, 91 student teachers participated in a pre-test/post-test design where they answered open-ended questions about a complex science concept both before and after reading either a traditional, expository science text or a refutational text that prompted the reader to change his/her beliefs according to scientific beliefs about the phenomenon. The student teachers completed a questionnaire concerning their regulation and processing strategies. The results showed that the students’ understanding improved after text reading intervention and that refutational text promoted understanding better than the traditional text. Additionally, regulation and processing strategies were found to be connected with understanding the science phenomenon. A weak trend showed that weaker learners would benefit more from the refutational text. It seems that learners with effective learning strategies are able to pick out the relevant content regardless of the text type, whereas weaker learners might benefit from refutational parts that contrast the most typical misconceptions with scientific views. The purpose of Study V was to use eye tracking to determine how third-year medical studets (n = 39) and internal medicine residents (n = 13) read and solve patient case texts. The results revealed differences between medical students and residents in processing patient case texts; compared to the students, the residents were more accurate in their diagnoses and processed the texts significantly faster and with a lower number of fixations. Different reading patterns were also found. The observed differences between medical students and residents in processing patient case texts could be used in medical education to model expert reasoning and to teach how a good medical text should be constructed. The main findings of the thesis indicate that even among very selected student populations, such as high-achieving medical students or student teachers, there seems to be a lot of variation in regulation strategies of learning and text processing. As these learning strategies are related to successful studying, students enter educational programmes with rather different chances of managing and achieving success. Further, the ways of engaging in learning seldom centre on a single strategy or approach; rather, students seem to combine several strategies to a certain degree. Sometimes, it can be a matter of perspective of which way of learning can be considered best; therefore, the reality of studying in higher education is often more complicated than the simplistic view of self-regulation as a good quality and external regulation as a harmful quality. The beginning of university studies may be stressful for many, as the gap between high school and university studies is huge and those strategies that were adequate during high school might not work as well in higher education. Therefore, it is important to map students’ learning strategies and to encourage them to engage in using high-quality learning strategies from the beginning. Instead of separate courses on learning skills, the integration of these skills into course contents should be considered. Furthermore, learning complex scientific phenomena could be facilitated by paying attention to high-quality learning materials and texts and other support from the learning environment also in the university. Eye tracking seems to have great potential in evaluating performance and growing diagnostic expertise in text processing, although more research using texts as stimulus is needed. Both medical and teacher education programmes and the professions themselves are challenging in terms of their multidisciplinary nature and increasing amounts of information and therefore require good lifelong learning skills during the study period and later in work life.
Resumo:
Text classification is essential for narrowing down the number of documents relevant to a particular topic for further pursual, especially when searching through large biomedical databases. Protein-protein interactions are an example of such a topic with databases being devoted specifically to them. This paper proposed a semi-supervised learning algorithm via local learning with class priors (LL-CP) for biomedical text classification where unlabeled data points are classified in a vector space based on their proximity to labeled nodes. The algorithm has been evaluated on a corpus of biomedical documents to identify abstracts containing information about protein-protein interactions with promising results. Experimental results show that LL-CP outperforms the traditional semisupervised learning algorithms such as SVMand it also performs better than local learning without incorporating class priors.
Resumo:
Ontology construction for any domain is a labour intensive and complex process. Any methodology that can reduce the cost and increase efficiency has the potential to make a major impact in the life sciences. This paper describes an experiment in ontology construction from text for the animal behaviour domain. Our objective was to see how much could be done in a simple and relatively rapid manner using a corpus of journal papers. We used a sequence of pre-existing text processing steps, and here describe the different choices made to clean the input, to derive a set of terms and to structure those terms in a number of hierarchies. We describe some of the challenges, especially that of focusing the ontology appropriately given a starting point of a heterogeneous corpus. Results - Using mainly automated techniques, we were able to construct an 18055 term ontology-like structure with 73% recall of animal behaviour terms, but a precision of only 26%. We were able to clean unwanted terms from the nascent ontology using lexico-syntactic patterns that tested the validity of term inclusion within the ontology. We used the same technique to test for subsumption relationships between the remaining terms to add structure to the initially broad and shallow structure we generated. All outputs are available at http://thirlmere.aston.ac.uk/~kiffer/animalbehaviour/ webcite. Conclusion - We present a systematic method for the initial steps of ontology or structured vocabulary construction for scientific domains that requires limited human effort and can make a contribution both to ontology learning and maintenance. The method is useful both for the exploration of a scientific domain and as a stepping stone towards formally rigourous ontologies. The filtering of recognised terms from a heterogeneous corpus to focus upon those that are the topic of the ontology is identified to be one of the main challenges for research in ontology learning.
Resumo:
Ontology construction for any domain is a labour intensive and complex process. Any methodology that can reduce the cost and increase efficiency has the potential to make a major impact in the life sciences. This paper describes an experiment in ontology construction from text for the Animal Behaviour domain. Our objective was to see how much could be done in a simple and rapid manner using a corpus of journal papers. We used a sequence of text processing steps, and describe the different choices made to clean the input, to derive a set of terms and to structure those terms in a hierarchy. We were able in a very short space of time to construct a 17000 term ontology with a high percentage of suitable terms. We describe some of the challenges, especially that of focusing the ontology appropriately given a starting point of a heterogeneous corpus.
Resumo:
This article was written by a Swiss-German historical demographer after having visited different Brazilian Universities in 1984 as a guest-professor. It aims at promoting a real dialog between developed and developing countries, commencing the discussion with the question: Can we learn from each other? An affirmative answer is given, but not in the superficial manner in which the discussion partners simply want to give each other some "good advice" or in which the one declares his country's own development to be the solely valid standard. Three points are emphasized: 1. Using infant mortality in S. Paulo from 1908 to 1983 as an example, it is shown that Brazil has at its disposal excellent, highly varied research literature that is unjustifiably unknown to us (in Europe) for the most part. Brazil by no means needs our tutoring lessons as regards the causal relationships; rather, we could learn two things from Brazil about this. For one, it becomes clear that our almost exclusively medical-biological view is inappropriate for passing a judgment on the present-day problems in Brazil and that any conclusions so derived are thus only transferable to a limited extent. For another, we need to reinterpret the history of infant mortality in our own countries up to the past few decades in a much more encompassing "Brazilian" sense. 2. A fruitful dialog can only take place if both partners frankly present their problems. For this reason, the article refers with much emprasis to our present problems in dealing with death and dying - problems arising near the end of the demographic and epidemiologic transitions: the superanuation of the population, chronic-incurable illnesses as the main causes of death, the manifold dependencies of more and more elderly and really old people at the end of a long life. Brazil seems to be catching up to us in this and will be confronted with these problems sooner or later. A far-sighted discussion already at this time seems thus to be useful. 3. The article, however, does not want to conclude with the rather depressing state of affairs of problems alternatingly superseding each other. Despite the caution which definitely has a place when prognoses are being made on the basis of extrapolations from historical findings, the foreseeable development especially of the epidemiologic transition in the direction of a rectangular survival curve does nevertheless provide good reason for being rather optimistic towards the future: first in regards to the development in our own countries, but then - assuming that the present similar tendencies of development are stuck to - also in regard to Brazil.
Resumo:
In the present study we focus on the interaction between the acquisition of new words and text organisation. In the acquisition of new words we emphasise the acquisition of paradigmatic relations such as hyponymy, meronymy and semantic sets. We work with a group of girls attending a private school for adolescents in serious difficulties. The subjects are from disadvantaged families. Their writing skills were very poor. When asked to describe a garden, they write a short text of a single paragraph, the lexical items were generic, there were no adjectives, and all of them use mainly existential verbs. The intervention plan assumed that subjects must to be exposed to new words, working out its meaning. In presence of referents subjects were taught new words making explicit the intended relation of the new term to a term already known. In the classroom subjects were asked to write all the words they knew drawing the relationships among them. They talk about the words specifying the relation making explicit pragmatic directions like is a kind of, is a part of or are all x. After that subjects were exposed to the task of choosing perspective. The work presented in this paper accounts for significant differences in the text of the subjects before and after the intervention. While working new words subjects were organising their lexicon and learning to present a whole entity in perspective.
Resumo:
This paper reviews a study that was done with hearing and hearing impaired children to test the effectiveness of self-instructional programs and whether the results can be correlated with Educational Quotient and Intelligence Quotient.
Resumo:
This paper examines the phenomenon of 'entrepreneurial failure' from a UK regionally-based qualitative study, being that of explanations for failure provided by entrepreneurial CEOs. This paper contends that there are valuable lessons to be learned, from explanations provided of failure, that may reduce the very high recorded mortality rates of entrepreneurial businesses, in particular that of nascent entrepreneurs. Our intention is to make nascent entrepreneurs and their advisors more aware of the consequences of the likely personal risks they will be assuming, especially before they embark on their new business ventures. This paper focuses strongly on entrepreneurial 'personality characteristics' which can detrimentally influence the quality of decision-making. We provide data of some 'experiential learning from failure' from our case studies, that were compiled from interviews with the former directors, following their completion of the questionnaire survey. We describe 'failed entrepreneurs' who have successfully restarted their businesses as 'phoenix' entrepreneurs.
Resumo:
Ontology design and population -core aspects of semantic technologies- re- cently have become fields of great interest due to the increasing need of domain-specific knowledge bases that can boost the use of Semantic Web. For building such knowledge resources, the state of the art tools for ontology design require a lot of human work. Producing meaningful schemas and populating them with domain-specific data is in fact a very difficult and time-consuming task. Even more if the task consists in modelling knowledge at a web scale. The primary aim of this work is to investigate a novel and flexible method- ology for automatically learning ontology from textual data, lightening the human workload required for conceptualizing domain-specific knowledge and populating an extracted schema with real data, speeding up the whole ontology production process. Here computational linguistics plays a fundamental role, from automati- cally identifying facts from natural language and extracting frame of relations among recognized entities, to producing linked data with which extending existing knowledge bases or creating new ones. In the state of the art, automatic ontology learning systems are mainly based on plain-pipelined linguistics classifiers performing tasks such as Named Entity recognition, Entity resolution, Taxonomy and Relation extraction [11]. These approaches present some weaknesses, specially in capturing struc- tures through which the meaning of complex concepts is expressed [24]. Humans, in fact, tend to organize knowledge in well-defined patterns, which include participant entities and meaningful relations linking entities with each other. In literature, these structures have been called Semantic Frames by Fill- 6 Introduction more [20], or more recently as Knowledge Patterns [23]. Some NLP studies has recently shown the possibility of performing more accurate deep parsing with the ability of logically understanding the structure of discourse [7]. In this work, some of these technologies have been investigated and em- ployed to produce accurate ontology schemas. The long-term goal is to collect large amounts of semantically structured information from the web of crowds, through an automated process, in order to identify and investigate the cognitive patterns used by human to organize their knowledge.
Resumo:
Medical errors originating in health care facilities are a significant source of preventable morbidity, mortality, and healthcare costs. Voluntary error report systems that collect information on the causes and contributing factors of medi- cal errors regardless of the resulting harm may be useful for developing effective harm prevention strategies. Some patient safety experts question the utility of data from errors that did not lead to harm to the patient, also called near misses. A near miss (a.k.a. close call) is an unplanned event that did not result in injury to the patient. Only a fortunate break in the chain of events prevented injury. We use data from a large voluntary reporting system of 836,174 medication errors from 1999 to 2005 to provide evidence that the causes and contributing factors of errors that result in harm are similar to the causes and contributing factors of near misses. We develop Bayesian hierarchical models for estimating the log odds of selecting a given cause (or contributing factor) of error given harm has occurred and the log odds of selecting the same cause given that harm did not occur. The posterior distribution of the correlation between these two vectors of log-odds is used as a measure of the evidence supporting the use of data from near misses and their causes and contributing factors to prevent medical errors. In addition, we identify the causes and contributing factors that have the highest or lowest log-odds ratio of harm versus no harm. These causes and contributing factors should also be a focus in the design of prevention strategies. This paper provides important evidence on the utility of data from near misses, which constitute the vast majority of errors in our data.
Resumo:
This paper describes the processes used by students to learn from worked-out examples and by working through problems. Evidence is derived from protocols of students learning secondary school mathematics and physics. The students acquired knowledge from the examples in the form of productions (condition-->action): first discovering conditions under which the actions are appropriate and then elaborating the conditions to enhance efficiency. Students devoted most of their attention to the condition side of the productions. Subsequently, they generalized the productions for broader application and acquired specialized productions for special problem classes.
Resumo:
Human Engineering Project 20-TV-1, Project designation NR-781.
Resumo:
"March 27, 1991."