940 resultados para Leaf fall
Resumo:
Context: Anthropogenic activity has increased the level of atmospheric CO2, which is driving an increase of global temperatures and associated changes in precipitation patterns. At Northern latitudes, one of the likely consequences of global warming is increased precipitation and air humidity. Aims: In this work, the effects of both elevated atmospheric CO2 and increased air humidity on trees commonly growing in northern European forests were assessed. Methods: The work was carried out under field conditions by using Free Air Carbon dioxide Enrichment (FACE) and Free Air Humidity Manipulation (FAHM) systems. Leaf litter fall was measured over 4 years (FACE) or 5 years (FAHM) to determine the effects of FACE and FAHM on leaf phenology. Results: Increasing air humidity delayed leaf litter fall in Betula pendula, but not in Populus tremula × tremuloides. Similarly, under elevated atmospheric CO2, leaf litter fall was delayed in Betula pendula, but not in Alnus glutinosa. Increased CO2 appeared to interact with periods of low precipitation in summer and high ozone levels during these periods to effect leaf fall. Conclusions: This work shows that increased CO2 and humidity delay leaf fall, but this effect is species specific.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The leaves of woody plants at Harvard Forest in Central Massachusetts, USA, changed color during senescence; 70% (62/89) of the woody species examined anatomically contained anthocyanins during senescence. Anthocyanins were not present in summer green leaves, and appeared primarily in the vacuoles of palisade parenchyma cells. Yellow coloration was a result of the unmasking of xanthophyll pigments in senescing chloroplasts. In nine red-senescing species, anthocyanins were not detectable in mature leaves, and were synthesized de novo in senescence, with less than 20 m g cm - 2 of chlorophyll remaining. Xanthophyll concentrations declined in relation to chlorophyll to the same extent in both yellow- and red-leaved taxa. Declines in the maximum photosystem II quantum yield of leaves collected prior to dawn were only slightly less in the red-senescing species, indicating no long-term protective activity. Red-leaved species had significantly greater mass/area and lower chlorophyll a / b ratios during senescence. Nitrogen tissue concentrations in mature and senescent leaves negatively correlated to anthocyanin concentrations in senescent leaves, weak evidence for more efficient nitrogen resorption in anthocyanic species. Shading retarded both chlorophyll loss and anthocyanin production in Cornus alternifolia , Acer rubrum , Acer saccharum , Quercus rubra and Viburnum alnifolium . It promoted chlorophyll loss in yellow-senescing Fagus grandifolia . A reduced red : far-red ratio did not affect this process. Anthocyanins did not increase leaf temperatures in Q. rubra and Vaccinium corymbosum on cold and sunny days. The timing of leaf-fall was remarkably constant from year to year, and the order of senescence of individual species was consistent.
Resumo:
Anthocyanins are synthesized during leaf senescence in certain plants across virtually all biomes, but are most spectacular in the autumn foliage of temperate deciduous forests. The patterns of color production in senescing foliage depend at least partly upon species composition and their phenology. Both ecological and physiological explanations have been raised to explain why plants produce this pigment just before leaf fall. Physiological explanations, as photoprotection, predict that cyanic leaves would be better able to resorb nitrogen during the process of chlorophyll degradation. Ecological explanations predict better dispersal of propagules advertised by association with the brilliantly colored leaves (plausible for only a minority of species), or warning against egg-laying activity of herbivorous insects, as aphids. These hypotheses make predictions that we now can test, to help us understand this old mystery - and majestic phenomenon.
Resumo:
We monitored litterfall biomass at six different sites of melaleuca (Melaleuca quinquenervia (Cav.) S.T. Blake) forested wetlands in South Florida from July 1997 to June 1999. Annual litterfall of melaleuca varied between sites from 6.5 to 9.9 t dry wt ha(-1) yr(1) over the two-year period. Litterfall was significantly higher (p < 0.0001) in scasonally flooded habitats (9.3 t ha(-1) yr(1)) than in non-flooded (7.5 t ha(-1) yr(1)) and permanently flooded habitats (8.0 t ha(-1) yr(1)). Leaf fall was the major component forming 70% of the total litter, woody material 16%, and reproductive material 11%. Phenology of flowering and leaf flush was investigated by examination of the timing and duration of the fall of different plant parts in the litter traps, coupled with monthly field observations during the two-year study. In both years, flowering began in October and November, with peak flowers production around December, and was essentially completed by February and March. New shoot growth began in mid winter after peak flowering, and extended into the spring. Very little new growth was observed in melaleuca forests during the summer months, from May to August, in South Florida. In contrast, the fall of leaves and small wood was recorded in every month of the year, but generally increased during the dry season with higher levels observed from February to April. Also, no seasonality was recorded in the fall of seed capsules, which apparently resulted from the continual self-thinning of small branches and twigs inside the forest stand. In planning management for perennial weeds, it is important to determine the period during its annual growth cycle when the plant is most susceptible to control measures. These phenological data suggest that the appropriate time for melaleuca control in South Florida might be during late winter and early spring, when the plant is most active.
Resumo:
Recently, Dictyla monotropidia Stal was observed feeding on plants of black sage (Cordia verbenacea Al. DC). The colonies of this insect were observed on abaxial surface of leaves, with nymphs and adults sucking the phloem sieve, causing spot, yellow aspect and leaf fall. D. monotropidia was already related as pest in other Cordia species in countries of Central and South America. Although, this is the first report of this insect attacking plants of C. verbenacea in Brazil.
Resumo:
The cambial activity and periodicity of secondary xylem and phloem formation have been less studied in tropical tree species than in temperate ones. This paper describes the relationship between seasonal cambial activity, xylem and phloem development, and phenology in Schizolobium parahyba, a fast growing semideciduous seasonal forest tree from southeastern Brazil. From 2002 to 2003, wood samples were collected periodically and phenology and climate were recorded monthly in the same period. S. parahyba forms annual growth increments in wood, delimited by narrow initial parenchyma bands. The reduction of the cambial activity to a minimum correlates to the dry season and leaf fall. The higher cambial activity correlates to the wet season and the presence of mature leaves. In phloem, a larger conductive region was observed in the wet season, when the trees were in full foliage. The secondary phloem did not exhibit any incremental zone marker; however, we found that the axial parenchyma tends to form irregular bands.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Merostachys riedeliana Rupr. é uma espécie monocárpica com floração cíclica e muito freqüente em sub-bosques de fragmentos florestais do sul do estado de Minas Gerais, Brasil. Sua biologia floral e seu sistema de reprodução foram estudados e comparados com os de outros bambus. Devido ao complexo sistema de rizomas, formam touceiras vigorosas no interior da floresta, ocorrendo a interrupção na produção de novos colmos meses antes do aparecimento das primeiras inflorescências. O início da floração maciça e da morte da população ocorreu em outubro de 1998 e maio de 1999, respectivamente, com pico de floração durante a estação quente e chuvosa (dezembro e janeiro). As inflorescências espiciformes possuem, em média, 29 espiguetas. Estas são hermafroditas com três anteras poricidas e dois estigmas plumosos que se expõem durante a antese. O pólen é abundante e facilmente liberado das anteras pelo vento ou pelos visitantes. Apis mellifera L. e Trigona spinipes (F.) foram os visitantes mais freqüentes, atuando como pilhadores de pólen e, ocasionalmente, através de movimentos vibratórios, como elementos auxiliares para a dispersão do pólen. A alta pluviosidade durante a floração e a escassez de vento no sub-bosque da floresta, podem diminuir a efetividade da anemofilia. No entanto, vários caracteres morfológicos das espiguetas, queda de folhas e o hábito espacialmente agrupado, apontam para uma polinização pelo vento. Testes de polinização controlada, mostraram que M. riedeliana é autocompatível (ISI 0,99). A auto-incompatibilidade não favorece a formação de frutos em clones vegetais, ao passo que a autocompatibilidade poderia resultar em uma elevada produção de sementes. Assim, a possível ocorrência de clones de M. riedeliana nos fragmentos florestais, originados pelo crescimento vegetativo durante os intervalos reprodutivos de 30-32 anos, poderiam explicar o alto investimento na produção de espiguetas e a formação de frutos provenientes da autocompatibilidade.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A cultura da seringueira, Hevea brasiliensis (Willd. ex. Adr. de Juss.) Müell. Arg., pode ser atacada pelo fungo Oidium heveae Steinm e pelo ácaro Calacarus heveae Feres, causadores de desfolha em seringais paulistas. O presente trabalho teve por objetivo avaliar o efeito do fungicida sistêmico fenarimol no controle do fungo e a sua interferência na população de C. heveae. Comparou-se a sua aplicação em quatro momentos: 1- uma aplicação no reenfolhamento das plantas (agosto); 2- uma aplicação em janeiro; 3- duas aplicações, uma no reenfolhamento e uma em março; 4 - quatro aplicações durante o ciclo da cultura. Nas quatro situações, o fungicida reduziu os sintomas da doença, entretanto houve ressurgência dos ácaros. Considerando-se o manejo conjunto de O. heveae e C. heveae o melhor resultado foi obtido com duas aplicações do fungicida.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)