979 resultados para Lateral pterygoid muscle
Resumo:
At the end of the last century, a model to explain clinical observations related to the mandibular growth was developed. According to it, the lateral pterigoid muscle (LPM) was one of the main modulators of the differentiation of mesenquimal cells inside the condyle to condroblasts or osteoblasts, and therefore of the growth of the mandibular condilar cartilage (CCM). The main components of the model were the humoral and the mechanical. Nowadays, the humoral would include growth factors such as IGF-I, FGF-2 and VEGF, which seem to be involved in mandibular growth. Since skeletal muscle can secrete these growth factors, there is a possibility that LPM modulates the growth of CCM by a paracrine or endocrine mechanism. The mechanical component derived from the observations that both the blood flow inside the temporomandibular joint (ATM) and the action of the retrodiscal pad on the growth of the CCM, depend, in part, on the contractile activity of the LPM. Despite the fact that there are some results suggesting hat LPM is activated under conditions of mandibular protrusion, there is no full agreement on whether this can stimulate the growth of CCM. In this review, the contributions and limitations of the works related to mandibular growth are discussed and a model which integrates the available information to explain the role of the LPM in the growth of the CCM is proposed.
Resumo:
Lateral pterygoid muscle (LPM) plays an important role in jaw movement and has been implicated in Temporomandibular disorders (TMDs). Migraine has been described as a common symptom in patients with TMDs and may be related to muscle hyperactivity. This study aimed to compare LPM volume in individuals with and without migraine, using segmentation of the LPM in magnetic resonance (MR) imaging of the TMJ. Twenty patients with migraine and 20 volunteers without migraine underwent a clinical examination of the TMJ, according to the Research Diagnostic Criteria for TMDs. MR imaging was performed and the LPM was segmented using the ITK-SNAP 1.4.1 software, which calculates the volume of each segmented structure in voxels per cubic millimeter. The chi-squared test and the Fisher's exact test were used to relate the TMD variables obtained from the MR images and clinical examinations to the presence of migraine. Logistic binary regression was used to determine the importance of each factor for predicting the presence of a migraine headache. Patients with TMDs and migraine tended to have hypertrophy of the LPM (58.7%). In addition, abnormal mandibular movements (61.2%) and disc displacement (70.0%) were found to be the most common signs in patients with TMDs and migraine. In patients with TMDs and simultaneous migraine, the LPM tends to be hypertrophic. LPM segmentation on MR imaging may be an alternative method to study this muscle in such patients because the hypertrophic LPM is not always palpable.
Resumo:
The lateral pterygoid muscle, more specifically its superior head, as we know, is closely related to the temporomandibular joint (TMJ). Particularly in children, in contrast with what was observed in adults, these joints have been rarely studied, by the anatomic functional aspect, little knowing about its functions in the embryonic and fetal periods. We used, in this work, 12 fetuses ranging in age from 16 to 39 weeks of intrauterine life, where we observed that the superior head of the lateral pterygoid muscle is inserted in the disc and in the articular capsule, in all age groups studied, and also, that the fibers and the thickness of the articular disc is, as well as the articular capsule suffer modifications in accordance with the period of development. © 2007 Sociedad Chilena de Anatom•br>.
Resumo:
In this report, we present a case of myositis ossificans traumatica (MOT) of the medial pterygoid muscle that had developed after mandibular block anesthesia administered for endodontic treatment of the lower right second molar, demonstrating typical features of this condition. MOT should be considered as a differential diagnosis when there is severe limitation of jaw opening and an associated trauma. Panoramic radiographs and axial and coronal computed tomography (CT) scans can effectively delineate the calcified mass. Other imaging studies that may be helpful include magnetic resonance imaging (MRI), bone scans, and ultrasound. As shown in our case, calcified masses were found in the right mandibular angle, which severely limited jaw opening. Some earlier reported cases of MOT were treated by extraoral surgical approaches with complete removal of the evolving muscle. The aim of this case report is to present only the diagnostic imaging aspects of myositis ossificans traumatica.
Resumo:
INTRODUCTION Persistent traumatic peroneal nerve palsy, following nerve surgery failure, is usually treated by tendon transfer or more recently by tibial nerve transfer. However, when there is destruction of the tibial anterior muscle, an isolated nerve transfer is not possible. In this article, we present the key steps and surgical tips for the Ninkovic procedure including transposition of the neurotized lateral gastrocnemius muscle with the aim of restoring active voluntary dorsiflexion. SURGICAL TECHNIQUE The transposition of the lateral head of the gastrocnemius muscle to the tendons of the anterior tibial muscle group, with simultaneous transposition of the intact proximal end of the deep peroneal nerve to the tibial nerve of the gastrocnemius muscle by microsurgical neurorrhaphy is performed in one stage. It includes 10 key steps which are described in this article. Since 1994, three clinical series have highlighted the advantages of this technique. Functional and subjective results are discussed. We review the indications and limitations of the technique. CONCLUSION Early clinical results after neurotized lateral gastrocnemius muscle transfer appear excellent; however, they still need to be compared with conventional tendon transfer procedures. Clinical studies are likely to be conducted in this area largely due to the frequency of persistant peroneal nerve palsy and the limitations of functional options in cases of longstanding peripheral nerve palsy, anterior tibial muscle atrophy or destruction.
Resumo:
The temporomandibular joint (TMJ) is a highly specialized articulation that differs from all the other synovial articulations for many reasons. In children, different from what we observe in adults, these articulations have rarely been studied under the morphofunctional aspect, mainly in the embryonary and fetal stages. In this study 10 fetuses with ages varying from 16 to 39 weeks of intrauterine life were used, and it could be observed that the fibers and thickness of the articular disc, as well as the articular capsule and the condylar process, suffer modifications according to age. It was also observed that the superior head of the lateral pterygoid muscle inserts itself in the articular disc and capsule in all the ages studied. Also, the maturation of the articular tissues, especially of the articular disc, as well as, the associated muscles, suggests that the TMJ was able to carry out mandibular movements since the 24(th) week of intrauterine life.
Resumo:
Pós-graduação em Reabilitação Oral - FOAR
Resumo:
A clinical investigation was undertaken to find out the prevalence of craniomandibular signs and symptoms in a group of 11 patients with labiopalatal lesions. The number and distribution of occlusal contacts was evaluated through questionnaire, clinical examination and analysis of mounted casts in partially adjustable articulators in the position of maximum inter cuspation. The most frequent signs and symptoms were articular sounds and lateral pterygoid muscle tenderness to palpation followed by restriction of mouth opening and sensation of tiredness. The number of occlusal contacts was small, mean of 5 contacts per patient, and the site was considered as atypical, 62% of them were on inclined plane surfaces , suggesting occlusal instability. The frequency of signs and symptoms was low and they were of a mild character. The most prevailing signs of craniomandibular dysfunction - articular sounds, muscular tenderness to palpation and restriction of mouth opening - was noticed in only one of the patients
Resumo:
Modeling is a step to perform a finite element analysis. Different methods of model construction are reported in literature, as the Bio-CAD modeling. The purpose of this study was to perform a model evaluation and application using two methods of Bio-CAD modeling from human edentulous hemi-mandible on the finite element analysis. From CT scans of dried human skull was reconstructed a stereolithographic model. Two methods of modeling were performed: STL conversion approach (Model 1) associated to STL simplification and reverse engineering approach (Model 2). For finite element analysis was used the action of lateral pterygoid muscle as loading condition to assess total displacement (D), equivalent von-Mises stress (VM) and maximum principal stress (MP). Two models presented differences on the geometry regarding surface number (1834 (model 1); 282 (model 2)). Were observed differences in finite element mesh regarding element number (30428 nodes/16683 elements (model 1); 15801 nodes/8410 elements (model 2). D, VM and MP stress areas presented similar distribution in two models. The values were different regarding maximum and minimum values of D (ranging 0-0.511 mm (model 1) and 0-0.544 mm (model 2), VM stress (6.36E-04-11.4 MPa (model 1) and 2.15E-04-14.7 MPa (model 2) and MP stress (-1.43-9.14 MPa (model 1) and -1.2-11.6 MPa (model 2). From two methods of Bio-CAD modeling, the reverse engineering presented better anatomical representation compared to the STL conversion approach. The models presented differences in the finite element mesh, total displacement and stress distribution.
Resumo:
Masticatory muscle contraction causes both jaw movement and tissue deformation during function. Natural chewing data from 25 adult miniature pigs were studied by means of time series analysis. The data set included simultaneous recordings of electromyography (EMG) from bilateral masseter (MA), zygomaticomandibularis (ZM) and lateral pterygoid muscles, bone surface strains from the left squamosal bone (SQ), condylar neck (CD) and mandibular corpus (MD), and linear deformation of the capsule of the jaw joint measured bilaterally using differential variable reluctance transducers. Pairwise comparisons were examined by calculating the cross-correlation functions. Jaw-adductor muscle activity of MA and ZM was found to be highly cross-correlated with CD and SQ strains and weakly with MD strain. No muscle’s activity was strongly linked to capsular deformation of the jaw joint, nor were bone strains and capsular deformation tightly linked. Homologous muscle pairs showed the greatest synchronization of signals, but the signals themselves were not significantly more correlated than those of non-homologous muscle pairs. These results suggested that bone strains and capsular deformation are driven by different mechanical regimes. Muscle contraction and ensuing reaction forces are probably responsible for bone strains, whereas capsular deformation is more likely a product of movement.
Resumo:
The myotendinous junction (MTJ) is a major area for transmitting force from the skeletal muscle system and acts in joint position and stabilization. This study aimed to use transmission electron microscopy to describe the ultrastructural features of the MTJ of the sternomastoid muscle in Wistar rats from newborn to formation during adulthood and possible changes with aging. Ultrastructural features of the MTJ from the newborn group revealed pattern during development with interactions between muscle cells and extracellular matrix elements with thin folds in the sarcolemma and high cellular activity evidenced through numerous oval mitochondria groupings. The adult group had classical morphological features of the MTJ, with folds in the sarcolemma forming long projections called finger-like processes and sarcoplasmic invaginations. Sarcomeres were aligned in series, showing mitochondria near the Z line in groupings between collagen fiber bundles. The old group had altered finger-like processes, thickened in both levels of sarcoplasmic invaginations and in central connections with the lateral junctions. We conclude that the MTJ undergoes intense activity from newborn to its formation during adulthood. With increasing age, changes to the MTJ were observed in the shapes of the invaginations and finger-like processes due to hypoactivity, potentially compromising force transmission and joint stability. Microsc. Res. Tech. 75:12921296, 2012. (C) 2012 Wiley Periodicals, Inc.
Resumo:
This study analyzed the effects of unilateral detachment of the temporal muscle and coronoidotomy on facial growth in young rats. Thirty one-month-old Wistar rats were distributed into three groups: detachment, coronoidotomy and sham-operated. Under general anesthesia, unilateral detachment of the temporal muscle was performed for the detachment group, unilateral coronoidotomy was performed for the coronoidotomy group, and only surgical access was performed for the sham-operated group. The animals were sacrificed at three months of age. Their soft tissues were removed, and the mandible was disarticulated. Radiographic projections-axial views of the skulls and lateral views of hemimandibles-were taken. Cephalometric evaluations were performed, and the values obtained were submitted to statistical analyses. There was a significant homolateral difference in the length of the premaxilla, height of the mandibular ramus and body, and the length of the mandible in all three groups. However, comparisons among the groups revealed no significant differences between the detachment and coronoidotomy groups for most measurements. It was concluded that both experimental detachment of the temporal muscle and coronoidotomy during the growth period in rats induced asymmetry of the mandible and affected the premaxilla.
Resumo:
The description of the macroscopic structure of the masticatory muscles is based upon the dissection of 26 adult and juvenile tufted capuchin monkeys (Cebus apella) of both sexes. A detailed description of the temporal, masseter and medial and lateral pterygoid muscles on each side of the head is given. Not only the general shape, origin and insertion are described, but also the architectonic organization, i.e. the stratiform disposition of the muscle parts. Anatomical variations in each sex or age appear to be few and unimportant. Anatomical aspects are found to be essentially similar to those found in other primates including man; however some characteristics differences do exist and deserve special comment.