171 resultados para Laplacian


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Space-fractional operators have been used with success in a variety of practical applications to describe transport processes in media characterised by spatial connectivity properties and high structural heterogeneity altering the classical laws of diffusion. This study provides a systematic investigation of the spatio-temporal effects of a space-fractional model in cardiac electrophysiology. We consider a simplified model of electrical pulse propagation through cardiac tissue, namely the monodomain formulation of the Beeler-Reuter cell model on insulated tissue fibres, and obtain a space-fractional modification of the model by using the spectral definition of the one-dimensional continuous fractional Laplacian. The spectral decomposition of the fractional operator allows us to develop an efficient numerical method for the space-fractional problem. Particular attention is paid to the role played by the fractional operator in determining the solution behaviour and to the identification of crucial differences between the non-fractional and the fractional cases. We find a positive linear dependence of the depolarization peak height and a power law decay of notch and dome peak amplitudes for decreasing orders of the fractional operator. Furthermore, we establish a quadratic relationship in conduction velocity, and quantify the increasingly wider action potential foot and more pronounced dispersion of action potential duration, as the fractional order is decreased. A discussion of the physiological interpretation of the presented findings is made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let Ohm be a bounded domain in IRN, N greater than or equal to 2, lambda > 0, q is an element of (0, N - 1) and alpha is an element of (1, N/N-1 In this article we show the existence of at least two positive solutions for the following quasilinear elliptic problem with an exponential type nonlinearity:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the dynamics of desorption of a polymer molecule which is pulled at one of its ends with force f, trying to desorb it. We assume a monomer to desorb when the pulling force on it exceeds a critical value f(c). We formulate an equation for the average position of the n-th monomer, which takes into account excluded-volume interaction through the blob-picture of a polymer under external constraints. The approach leads to a diffusion equation with a p-Laplacian for the propagation of the stretching along the chain. This has to be solved subject to a moving boundary condition. Interestingly, within this approach, the problem can be solved exactly in the trumpet, stem-flower and stem regimes. In the trumpet regime, we get tau = tau(0)n(d)(2), where n(d) is the number of monomers that have desorbed at the time tau. tau(0) is known only numerically, but for f close to f(c), it is found to be tau(0) similar to f(c)/(f(2/3) - f(c)(2/3)) If one used simple Rouse dynamics, this result would change to tau similar to f(c)n(d)(2)/(f - f(c)). In the other regimes too, one can find exact solution, and interestingly, in all regimes tau similar to n(d)(2). Copyright (C) EPLA, 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The past decade has seen a rise of interest in Laplacian eigenmaps (LEMs) for nonlinear dimensionality reduction. LEMs have been used in spectral clustering, in semisupervised learning, and for providing efficient state representations for reinforcement learning. Here, we show that LEMs are closely related to slow feature analysis (SFA), a biologically inspired, unsupervised learning algorithm originally designed for learning invariant visual representations. We show that SFA can be interpreted as a function approximation of LEMs, where the topological neighborhoods required for LEMs are implicitly defined by the temporal structure of the data. Based on this relation, we propose a generalization of SFA to arbitrary neighborhood relations and demonstrate its applicability for spectral clustering. Finally, we review previous work with the goal of providing a unifying view on SFA and LEMs. © 2011 Massachusetts Institute of Technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I.Wood: Maximal Lp-regularity for the Laplacian on Lipschitz domains, Math. Z., 255, 4 (2007), 855-875.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fourth-order partial differential equation (PDE) proposed by You and Kaveh (You-Kaveh fourth-order PDE), which replaces the gradient operator in classical second-order nonlinear diffusion methods with a Laplacian operator, is able to avoid blocky effects often caused by second-order nonlinear PDEs. However, the equation brought forward by You and Kaveh tends to leave the processed images with isolated black and white speckles. Although You and Kaveh use median filters to filter these speckles, median filters can blur the processed images to some extent, which weakens the result of You-Kaveh fourth-order PDE. In this paper, the reason why You-Kaveh fourth-order PDE can leave the processed images with isolated black and white speckles is analyzed, and a new fourth-order PDE based on the changes of Laplacian (LC fourth-order PDE) is proposed and tested. The new fourth-order PDE preserves the advantage of You-Kaveh fourth-order PDE and avoids leaving isolated black and white speckles. Moreover, the new fourth-order PDE keeps the boundary from being blurred and preserves the nuance in the processed images, so, the processed images look very natural.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel non-linear dimensionality reduction method, called Temporal Laplacian Eigenmaps, is introduced to process efficiently time series data. In this embedded-based approach, temporal information is intrinsic to the objective function, which produces description of low dimensional spaces with time coherence between data points. Since the proposed scheme also includes bidirectional mapping between data and embedded spaces and automatic tuning of key parameters, it offers the same benefits as mapping-based approaches. Experiments on a couple of computer vision applications demonstrate the superiority of the new approach to other dimensionality reduction method in term of accuracy. Moreover, its lower computational cost and generalisation abilities suggest it is scalable to larger datasets. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents generalized Laplacian eigenmaps, a novel dimensionality reduction approach designed to address stylistic variations in time series. It generates compact and coherent continuous spaces whose geometry is data-driven. This paper also introduces graph-based particle filter, a novel methodology conceived for efficient tracking in low dimensional space derived from a spectral dimensionality reduction method. Its strengths are a propagation scheme, which facilitates the prediction in time and style, and a noise model coherent with the manifold, which prevents divergence, and increases robustness. Experiments show that a combination of both techniques achieves state-of-the-art performance for human pose tracking in underconstrained scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nesta tese são estudados espaços de Besov de suavidade generalizada em espaços euclidianos, numa classe de fractais designados conjuntos-h e em estruturas abstractas designadas por espaços-h. Foram obtidas caracterizações e propriedades para estes espaços de funções. Em particular, no caso de espaços de Besov em espaços euclidianos, foram obtidas caracterizações por diferenças e por decomposições em átomos não suaves, foi provada uma propriedade de homogeneidade e foram estudados multiplicadores pontuais. Para espaços de Besov em conjuntos-h foi obtida uma caracterização por decomposições em átomos não suaves e foi construído um operador extensão. Com o recurso a cartas, os resultados obtidos para estes espaços de funções em fractais foram aplicados para definir e trabalhar com espaços de Besov de suavidade generalizada em estruturas abstractas. Nesta tese foi também estudado o laplaciano fractal, considerado a actuar em espaços de Besov de suavidade generalizada em domínios que contêm um conjunto-h fractal. Foram obtidos resultados no contexto de teoria espectral para este operador e foi estudado, à custa deste operador, um problema de Dirichlet fractal no contexto de conjuntos-h.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy of a graph G is the sum of the absolute values of the eigenvalues of the adjacency matrix of G. The Laplacian (respectively, the signless Laplacian) energy of G is the sum of the absolute values of the differences between the eigenvalues of the Laplacian (respectively, signless Laplacian) matrix and the arithmetic mean of the vertex degrees of the graph. In this paper, among some results which relate these energies, we point out some bounds to them using the energy of the line graph of G. Most of these bounds are valid for both energies, Laplacian and signless Laplacian. However, we present two new upper bounds on the signless Laplacian which are not upper bounds for the Laplacian energy. © 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relations between Laplacian eigenvectors and eigenvalues and the existence of almost equitable partitions (which are generalizations of equitable partitions) are presented. Furthermore, on the basis of some properties of the adjacency eigenvectors of a graph, a necessary and sufficient condition for the graph to be primitive strongly regular is introduced. © 2006 Elsevier Ltd. All rights reserved.