Maximal L p -regularity for the Laplacian on Lipschitz domains
Contribuinte(s) |
Institute of Mathematics & Physics (ADT) Mathematics and Physics |
---|---|
Data(s) |
06/11/2007
06/11/2007
01/04/2007
|
Resumo |
I.Wood: Maximal Lp-regularity for the Laplacian on Lipschitz domains, Math. Z., 255, 4 (2007), 855-875. We consider the Laplacian with Dirichlet or Neumann boundary conditions on bounded Lipschitz domains ?, both with the following two domains of definition: D1(?)={u?W1,p(?):?u?Lp(?), Bu=0} , or D2(?)={u?W2,p(?):Bu=0} , where B is the boundary operator. We prove that, under certain restrictions on the range of p, these operators generate positive analytic contraction semigroups on L p (?) which implies maximal regularity for the corresponding Cauchy problems. In particular, if ? is bounded and convex and 1<p?2 , the Laplacian with domain D 2(?) has the maximal regularity property, as in the case of smooth domains. In the last part, we construct an example that proves that, in general, the Dirichlet?Laplacian with domain D 1(?) is not even a closed operator. Peer reviewed |
Formato |
21 |
Identificador |
Wood , I 2007 , ' Maximal L p -regularity for the Laplacian on Lipschitz domains ' Mathematische Zeitschrift , vol 255 , no. 4 , pp. 855-875 . DOI: 10.1007/s00209-006-0055-6 0025-5874 PURE: 72925 PURE UUID: 7aeeb0f1-4f01-4381-8e2c-9856a448c8d1 dspace: 2160/348 |
Idioma(s) |
eng |
Relação |
Mathematische Zeitschrift |
Tipo |
/dk/atira/pure/researchoutput/researchoutputtypes/contributiontojournal/article |
Direitos |