Maximal L p -regularity for the Laplacian on Lipschitz domains


Autoria(s): Wood, Ian
Contribuinte(s)

Institute of Mathematics & Physics (ADT)

Mathematics and Physics

Data(s)

06/11/2007

06/11/2007

01/04/2007

Resumo

I.Wood: Maximal Lp-regularity for the Laplacian on Lipschitz domains, Math. Z., 255, 4 (2007), 855-875.

We consider the Laplacian with Dirichlet or Neumann boundary conditions on bounded Lipschitz domains ?, both with the following two domains of definition: D1(?)={u?W1,p(?):?u?Lp(?), Bu=0} , or D2(?)={u?W2,p(?):Bu=0} , where B is the boundary operator. We prove that, under certain restrictions on the range of p, these operators generate positive analytic contraction semigroups on L p (?) which implies maximal regularity for the corresponding Cauchy problems. In particular, if ? is bounded and convex and 1<p?2 , the Laplacian with domain D 2(?) has the maximal regularity property, as in the case of smooth domains. In the last part, we construct an example that proves that, in general, the Dirichlet?Laplacian with domain D 1(?) is not even a closed operator.

Peer reviewed

Formato

21

Identificador

Wood , I 2007 , ' Maximal L p -regularity for the Laplacian on Lipschitz domains ' Mathematische Zeitschrift , vol 255 , no. 4 , pp. 855-875 . DOI: 10.1007/s00209-006-0055-6

0025-5874

PURE: 72925

PURE UUID: 7aeeb0f1-4f01-4381-8e2c-9856a448c8d1

dspace: 2160/348

http://hdl.handle.net/2160/348

http://dx.doi.org/10.1007/s00209-006-0055-6

Idioma(s)

eng

Relação

Mathematische Zeitschrift

Tipo

/dk/atira/pure/researchoutput/researchoutputtypes/contributiontojournal/article

Direitos