10 resultados para LaF_3
Resumo:
研究了沉积温度对热舟蒸发氟化镧薄膜结构和光学性能的影响,沉积温度从200℃上升到350℃,间隔为50℃.采用分光光度计测量了样品的透射率和反射率光谱曲线,并在此基础上进行了光学损耗、光学常数以及带隙和截止波长的计算.采用表面轮廓仪进行了表面形貌和表面粗糙度的标定,采用X射线衍射(XRD)方法测量了不同沉积温度下样品的微结构.发现在短波长波段,随着沉积温度的升高,光学损耗增加,晶粒尺寸增大,表面粗糙度略有增加.不过散射损耗在光学损耗中所占比例均很小,光学损耗的增加主要由吸收损耗引起.随着沉积温度的升高,折射率与消光系数增大,带隙变小,相对应的截止波长向长波方向移动.
Resumo:
氟离子半径小,仅带一个负电荷;LaF_3中弱的共价键结合以及晶格中空位缺陷,使其表现出高的离子导电性能。有关LaF_3气敏元件的氧敏性质已有不少报道。属六方氟铈镧矿型结构的三氟化物掺杂适量的碱土金属或碱金属氟化物可提高其离子导电率。任玉芳等人研究了数种稀土复合氟化物元件的氧敏性质。掺杂PbF_2的复合稀土复化物的
Resumo:
利用1083K 时的 X-射线衍射数据,导出了 LaF_3-4LiF 和 LaF_3-4KF 系熔盐溶液的径向分布函数;获得了熔盐的离子间距数据,其中 LaF_3-4LiF 熔盐系中 La~(3+)-F~-的相互作用距离为0.238nm,LaF_3-4KF 系中的为0.233nm。还就熔盐离子间距结果讨论了温度与 La~(3+)的库伦力的问题。
Resumo:
熔盐是固体盐类的高温熔体,与其他液体一样,具有近程有序和远程无序的特性。对于其结构的研究和表征要比完全有序的晶体和完全无序的气体困难得多。传统的熔盐结构理论多以伪晶格模型为基础,虽能解释熔盐的某些规律,但与熔盐结构的真实情况相差甚远。较为严格的理论是分布函数理论。与格子理论不同,它不以任何物理模型为依据,而是从解决粒了间相互作用势出发的统计力学理论,该方法的特点是以求出径向分布函数去解整个体系的构型积分,然后求出其全部热力学量。但由于通过建立有关积分方程式(如
Resumo:
熔盐结构具有远程无序、近程有序的特点,对其结构的表征要比完全有序的晶体和完全无序的气体困难得多.分布函数理论是迄今为止描述熔盐结构较为成熟的方法,它依据统计理论,从粒子间相互作用势能出发,去求解表征体系结构的径向分布函数.实验上获得径向分布函数主要是通过衍射法.在国内,熔盐径向分布函数的实验工作才刚刚开始.本文报导了采用X-射线衍射方法测定LaF_3-KF熔盐径向分布函数的结果.
Resumo:
我们利用湿法制备了单一稀土氟化物LnF_3(Ln = La 、Ce、Nd、Gd、Tb、Dy、Er、Yb、Y), 并采用高温固相反应制备了稀土掺杂氟化物Ln_(1-x)MxF_(3-δ)(Ln = La、Ce、Gd、Yb、Y M = Ca、Sr、Ba)。用X射张衍射方法研究了它们的晶体结构。对单一稀土氟化物,LaF_3、CeF_3、NdF_3为六方晶系,GdF_3、TbF_3、DyF_3、DrF_3、YbF_3、YF_3为正交晶系。对掺杂氟化物,La_(0.95)Ba_(0.05)F_(3-δ)、Ce_(0.95)Ca_(0.05)F_(3-δ)、Yb_(0.70)Sr_(0.30)F_(3-δ)为固溶体,Ce_(0.95)Ca_(0.05)F_(3-δ)的晶胞参数比CeF_3的略为变小;Gd_(0.85)Ca_(0.15)F_(3-δ)、Y_(0.71)Ca_(0.29)F_(3-δ)为新化合物,Gd_(0.85)Ca_(0.15)F_(3-δ)的晶体结构由GdF_3的正交晶系变为六方晶系,其晶胞参数为:a=3.973A, C=7.124A, γ=120°, Y_(0.71)Ca_(0.29)F_(3-δ)化合物的晶体结构与YF_3相同为正交晶系,晶胞参数却较小:a=3.683A、b=6.978A, c=3.396A。 我们对氟化物的烧结陶瓷片进行了直流电导率测量。对单一稀土氟化物,结果表明六方结构的化合物的电导率高于正交结构的,对于相同结构的氟化物,一般地,稀土离子半径越大,电导率越高;对于掺杂氟化物,由于二价碱土金属离子掺杂可以提高氟离子空位浓度,因此掺杂物的电异率均高于对应的单一稀土氟化物,其中Gd_(0.85)Ca_(0.15)F_(3-δ)掺杂后变成更利于离子导电的六方结构。采用压片工艺,以La_(0.95)Ba_(0.05)F_(3-δ)、Ce_(0.95)Ca_(0.05)F_(3-δ)、Gd_(0.85)Ca_(0.15)F_(3-δ)和Y_(0.71)Ca_(0.29)F_(3-δ)为固体电解质材料制备电位输出式氧传感器件,并利用调节N_2、O_2流量比控制氧分压的方法,对器件的敏感性能进行测试。结果表明该类器件可在150 ℃的低温下对氧气敏感,器件的输出电位差与氧分压的对数值有较好的线性关系。器件的响应时间在2分与9分之间。该类器件的敏感机理是:氧气先吸附敏感电极上,发生还原反应后生成的氧负离子在敏感电极与固体电解质界面上发生晶格置换反应,使得氧分压的改变通过快离子即氟离子在两个界面上(另一界面为参比电极与固体电解质界面)的电化学势差的变化与输出电位差值的改变联系起来,从而实现利用输出电位差测定氧分压的目的。根据使用的敏感电极材料,可以有单电子反应和双电子反应两种敏感机理。器件是由参比电极、固体电解质、敏感电极三个部分构成。我们采用固定其中二个部分的材料,改变第三个部分的用料的方法,对器件的敏感性进行了对比研究:A、我们首先固定固体电解质为Ce_(0.95)Ca_(0.05)F_(3-δ)、敏感电极材料为Pt黑,采用不同的参比电极材料Bi+BiF_3、Sb+SbF_3、Mg+MgF_2、Zn+ZnF_2制备了器件。性能测试结果表明使用Bi+BiF_3参比电极材料的器件稳定性和敏感性都比其它器件好。器件的输出电位差取决于参比电极氟化物的标准生成自由能的大小。B、固定Bi+BiF_3为参比电极材料,Ce_(0.95)Ca_(0.05)F_(3-δ)为固体电解质,使用不同的敏感电极材料Pt黑、Pd粉、Ag粉和RuO_2制备器件。性能测试结果表明:Pt材料器件的精确度较高,Pd材料器件的响应最快(2分),RuO_2材料器件的敏感性较好。使用Ag、RuO_2敏感电极材料的器件采用的是单电子反应敏感机理:O_2 + e <-> O_2~-, O_2~- + V_F + F_(F-bar)~- <-> O_(F-bar) + O_F + F_(F-bar)。而使用Pt、Pd敏感电极材料的器件采用双电子反应敏感机理:O_2 + 2e <-> 2O~-, 2O~- + F_(F-bar) <->O_(F-bar) + F~-。C、我们固定Bi+BiF_3为参比电极材料,Pt和RuO_2为敏感电极材料,使用La_(0.95)Ba_(0.05)F_(3-δ)、Ce_(0.95)Ca_(0.05)F_(3-δ)、Gd_(0.85)(Ca_(0.015)F_(3-δ)、Yb_(0.70)Ca_(0.29)F_(3-δ)制备了两个系列的器件。结果表明,无论是使用Pt还是使用RuO_2为敏感电极材料,都有下列的结论:用Ce_(0.95)Ca_(0.05)F_(3-δ)的器件的精确度较高,La_(0.95)Ba_(0.05)F_(3-δ)材料器件的敏感性最好,而Gd_(0.85)(Ca_(0.015)F_(3-δ的响应最快(Pt器件2分,RuO_2器件5分)。并未发现同时具备各种较好性能的器件,与敏感电极材料对器件性能的影响相比,固体电解质材料的影响要小。对于材料完全相同的器件,我们还对工艺条件影响作了初步研究。制备器件的工艺条件由于各种难以控制的因素不会每次、每批完全相同,工艺条件的差别也会影响器件的各方面性能。研究结果表明,工艺差别对器件的输出电位差值和响应时间的影响较大,对敏感性能的影响则较小。
Resumo:
本论文包括两部分内容。第一部分为“Cu(III)及相关化合物的合成和性质的研究”;第二部分为“稀土复合氟化物的电性、氧敏和氢敏性质”。第一部分的主要内容有:1.制备了Na_4H[Cu(H_2TeO_6)_2]·17H_2O和Na_4K[Cu(HIO_6)_2]·12H_2O的Cu(III)单晶配合物。2.在比较相应的Cu(II)化合物的条件下,详细地研究了这二个Cu(III)配合物的电子光谱和Cu2p光电子能谱,由于价态升高,场强参数增大,Cu(III)化合物的d-d跃迁相对于Cu(II)化合物d-d跃迁,发生“蓝移”。3.成功地实现了用O_3和电化学方法对强碱溶液中Cu(II)配合物的氧化,获得了二个新的Cu(III)固态配合物Ba_4K[Cu(H_2TeO_6)_2] (OH)_4·6H_2O和Ba_3K[Cu(HIO_6)_2] (KOH)_(0.5)(OH)_2·8H_2O利用化学分析、磁学性质、电子光谱和Cu2p XPS,对这二个化合物进行了表征。4.对BaCuO_(2.5)的合成、电学性质、磁学性质、Cu(III) ESR和Cu2p XPS进行了研究。5.以Na_4K[Cu(HIO_6)_2]·12H_2O和BaCuO_(2.5)为参照物,用电子光谱和Cu2p XPS,确认了YBa_2Cu_3O_(7-5)中的高价态的铜。6.考察了以Cu(III)化合物作为Cu部分原料所合成的YBCO系超导材料的电学性质。第二部分的主要内容有:1.测试了元件“BiF_3(Bi)/Ce_(0.95)Ca_(0.05)F_(2.95)/Pt”的氧敏、氢敏等性能。从室温到130 ℃,元件的氧敏机理为“双电子反应”,电动势(EMF)与氧分压遵循Nernst关系式。室温时,元件对空气中100Pa或1000Pa氢气的响应时间仅为15秒或短于5秒;氢分压在16Pa~1000Pa范围内,EMF与氢分压的对数呈线性关系,斜率为-116mV/decade, 敏感机理表现为“混合电极电势”。元件具有良好的氢敏性能,并有一定的选择性。2.合成并测试了La_(1-x)Pb_xF_(3-x)(X = 0.00 ~ 0.15)的电导率,La_(0.95)Pb_(0.05)F_(2.95)的电导率最高,比LaF_3高约一个数量级。以La_(0.95)Pb_(0.05)F_(2.95)为固体电解质材料,Pd或Pt为敏感电极,BiF_3(Bi)或PbF_2(Pb)为参比电极,制成了四个元件。其中,“BiF_3(Bi)/La_(0.95)Pb_(0.05)F_(2.95)/Pt”具有最好的氧敏、氢敏性能。从室温到150 ℃,元件的EMF与1gPo_2附合Nernst关系式。150 ℃时,元件对氧气的响应时间仅为80秒。室温下,元件对空气中100Pa或1000Pa氢气的响应时间仅为75秒或15秒,元件的电动势EMF与氢分压的关系可表示为“E=E_o-96lgP_(H2)(mV)”。元件对CO有较差的敏感性能,而对空气中甲烷、乙烷或乙炔(≤1000Pa)不具敏感性能。3.合成并测试了Ln_(1-x)Pb_xF_(3-x)(Ln=Ce、Pr、Nd和Gd、Dy、Ho、Yb)的电性。前四个系列为离子导体材料,后三个系列可能为P型半导体。随着Ln原子序数增大,LnF_3导电性能变差;La~(3+)、Ce~(3+)、Pr~(3+)、Nd~(3+)与Pb~(2+)离子半径差异较小,LnF_3和PbF_2可以形成固溶体;而Gd~(3+)、Dy~(3+)、Ho~(3+)、Yb~(3+)与Pb~(2+)离子半径差异较大,LnF_3和PbF_2难以形成固溶体。
Resumo:
本文综述了无机闪烁材料研究的进展,着重了氟化物体系中几种新型无机闪烁材料的制备、性能及辐照损伤等特性。运用B-S法生长了BaF_2及BaF_2:Ce晶体,研究了其室温以上的TSL特性,发现BaF_2的TSL曲线是由381K和402K的双峰结构组成Ce的掺入使TSL强度降低,同时提高了其抗辐照性能。运用高温固相反应法合成了KMgF_3、KCaF_3、BaLiF_3微晶,用TSL和ESR研究了其辐照损伤及其恢复情况。纠正了文献中对KMgF_3热释峰归属的错误,发现在KMgF_3、KCaF_3中杂质Al~(3+)一方面引入新的缺陷而导致新的热释峰,另一方面抑制了F心的形成。在BaLiF_3中La~3、Yb~(3+)的掺入会抑制F心,同时使H心增强,观察到了大剂量(10~8Rad)辐照时BaLiF_3中FA心形成及其在加热和紫外光照射时向F心的转化。发现它们的X射线辐照损伤极易恢复,而γ射线辐照损伤则较难恢复。通过对ESR峰高与Eu掺杂浓度的研究,运用数学拟合法求得了Eu~(3+)掺入KMgF_3制备KMgF_3:Eu~(2+)的饱和掺杂浓度为0.29mol%。首次发现BaLiF_3:Eu~(2+)的PSL现象,并证明它是一种很有发展前途的新型X射线存贮材料。运用B-S法探索了KMgF_3、BaLiF_3、单晶生长工艺,用X射线四园衍射法发现La~(3+)、Tm~(3+)掺入KMgF_3时分另占据K~+、Mg~(2+)的格位,用SEM观察了浓H_2SO_4cf KMgF_3单晶的侵蚀形貌和BaLiF_3单晶生长中经常出现的包裹体。研究了LaF_3:Ce~(3+)的发光特性及其它三价稀土离子的共掺杂对Ce~(3+)发光特性的影响,发现其它三价稀土离子的共掺杂都会使Ce~(3+)的发光猝灭,并分别归结为能量传递和电荷转移。用B-S法生长了CeF_3单晶,但因原料纯度低,衰减常数和光子产额都比文献值要低,说明在闪烁晶体制备时,提高原料纯度是十分必要的。
Resumo:
LaF_3作为离子选择性电极和对气体的敏感性质已进行了一定的研究,但其他稀土氟化物的敏感性质却未见报道。本文合成了RE_(1-x)B_xF_(3-y),研究了它们的结构、电学性质及敏感性质,得到有可能在150℃使用的固体电解质氧敏材料。 (一) RE_(1-x)B_xF_(3-y)的结构分析 结构分析表明,Ca、Ba置换RE的含量少时,如La_(0.95)Ba_(0.05)F_(3-y)、Ce_(0.95)Ca_(0.05)F_(3-y)的X射线衍射分析结果与LaF_3、CeF_3相似,说明它们是固溶体。而Ca置换RE含量较多时,如Y_(0.71)Ca_(0.29)F_(3-y)、Gd_(0.85)Ca_(0.15)F_(3-主)的X射线衍射分析结果却与相应的YF_3和GdF_3完全不
Resumo:
本文计算了LaF_3,LuF_3,CaF_2,SrF_2和BaF_2中Ce~(3+)离子5d态的晶场参数,计算结果和实验符合很好,同时讨论了5d态能级中心在晶体中的下降原因。