112 resultados para LINEWIDTH
Resumo:
We study the spectral and noise properties of the fluorescence field emitted from a two-level atom driven by a beam of squeezed light. For a weak driving field we derive simple analytical formulae for the fluorescence and quadrature-noise spectra which are valid for an arbitrary bandwidth of the squeezed field. We analyse the spectra in the regime where the squeezing bandwidth is smaller or comparable to the atomic linewidth, the area where non-Markovian effects are important. We emphasize that there is a noticable difference between the fluorescence spectra for the thermal and squeezed field excitations. In both cases the spectrum can be narrower than any bandwidth involved in the process. However, as we point out for the squeezed driving field the linewidth narrowing, being much larger than in the thermal-field case, can be attributed to the squeezing of the fluctuations in the driving held. We also calculate the quadrature-noise spectrum of the emitted fluorescence, and find that for a detuned squeezed field the fluorescence spectrum does not reveal the quadrature-noise spectrum. In contrast to the fluorescence spectrum having two peaks, the quadrature-noise spectrum exhibits three peaks. We explain this difference as arising from the competiting three-photon scattering processes. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The fluorescence spectrum of a strongly driven two-level atom located inside an optical cavity damped by a narrow-bandwidth squeezed vacuum is studied. We use a dressed atom model approach, first applied to squeezed vacuum problems by Yeoman and Barnett, to derive the master equation of the system and discuss the role of the cavity and the squeezed vacuum in the narrowing of the spectral lines and the population trapping effect. We find that in the presence of a single-mode cavity the effect of squeezing on the fluorescence spectrum is more evident in the linewidths of the Rabi sidebands rather than in the linewidth of the central component. Even in the absence of squeezing, the cavity can reduce the linewidth of the central component almost to zero, whereas the Rabi sidebands can be narrowed only to some finite value. In the presence of a two-mode cavity and a two-mode squeezed vacuum the signature of squeezing is evident in the linewidths of all spectral lines. We also establish that the narrowing of the spectral lines is very sensitive to the detuning of the driving field from the atomic resonance. Moreover, we find that the population trapping effect, predicted for the broadband squeezed vacuum case, may appear in a narrow-bandwidth case only if the input squeezed modes are perfectly matched to the cavity modes and if there is non-zero squeezing at the Rabi sidebands.
Resumo:
We examine subnatural phase-dependent linewidths in the fluorescence spectrum of a three-level atom damped by a narrow-bandwidth squeezed vacuum in a cavity. Using the dressed-atom model approach of a strongly driven three-level cascade system, we derive the master equation of the system from which we obtain simple analytical expressions for the fluorescence spectrum. We show that the phase effects depend on the bandwidths of the squeezed vacuum and the cavity relative to the Rabi frequency of the driving fields. When the squeezing bandwidth is much larger than the Rabi frequency, the spectrum consists of five lines with only the central and outer sidebands dependent on the phase. For a squeezing bandwidth much smaller than the Rabi frequency the number of lines in the spectrum and their phase properties depend on the frequency at which the squeezing and cavity modes are centered. When the squeezing and cavity modes are centered on the inner Rabi sidebands, the spectrum exhibits five lines that are completely independent of the squeezing phase with only the inner Rabi sidebands dependent on the squeezing correlations. Matching the squeezing and cavity modes to the outer Rabi sidebands leads to the disappearance of the inner Rabi sidebands and a strong phase dependence of the central line and the outer Rabi sidebands. We find that in this case the system behaves as an individual two-level system that reveals exactly the noise distribution in the input squeezed vacuum. [S1050-2947(97)00111-X].
Resumo:
Anomalous thermal behavior on the EPR linewidths of Gd impurities diluted in Cc compounds has been observed. In metals, the local magnetic moment EPR linewidth, Delta H, is expected to increase linearly with the temperature. In contrast, in CexLa1-xOs2 the Gd EPR spectra show a nonlinear increase. In this work, the mechanisms that are responsible for the thermal behavior of the EPR lines in CexLa1-xOs2 are examined. We show that the exchange interaction between the local magnetic moments and the conduction electrons are responsible for the narrowing of the spectra at low temperatures. At high temperatures, the contribution to the linewidth of the exchange interaction between the local magnetic moments and the Ce ions has an exponential dependence on the excitation energy of the intermediate valent ions. A complete fitting of the EPR spectra for powdered samples is obtained, (C) 1998 American Institute of Physics. [S0021-8979(98)39911-9].
Resumo:
Anomalous thermal behavior on the EPR linewidths has been observed for Gd impurities diluted in CexA1-xBn (A=La,Y, B=Ir,Os,Rh,Pd) intermediate-valence compounds. In this work we show that the exchange interaction between the local magnetic moments and the intermediate-valence host ions has an important contribution to the relaxation rates of the local moments. We calculated the relaxation, using the Redfield formalism and the ideas contained in the interconfigurational fluctuation model of Hirst. We show that the exchange interaction contribution has an exponential dependence on the excitation energy of the intermediate-valence ions. © 1992 The American Physical Society.
Resumo:
A new method for measuring the linewidth enhancement factor (α-parameter) of semiconductor lasers is proposed and discussed. The method itself provides an estimation of the measurement error, thus self-validating the entire procedure. The α-parameter is obtained from the temporal profile and the instantaneous frequency (chirp) of the pulses generated by gain switching. The time resolved chirp is measured with a polarization based optical differentiator. The accuracy of the obtained values of the α-parameter is estimated from the comparison between the directly measured pulse spectrum and the spectrum reconstructed from the chirp and the temporal profile of the pulse. The method is applied to a VCSEL and to a DFB laser emitting around 1550 nm at different temperatures, obtaining a measurement error lower than ± 8%.
Resumo:
Photonics logic devices are currently finding applications in most of the fields where optical signals are employed. These areas range from optical communications to optical computing, covering as well as other applications in photonics sensing and metrology. Most of the proposed configurations with photonics logic devices are based on semiconductor laser structures with “on/off” behaviors, operating in an optical amplifier configuration. They are able to offer non-linear gain or bistable operation, being these properties the basis for their applications in these fields. Moreover, their large number of potential affecting parameters onto their behavior offers the possibility to choose the best solution for each case.
Resumo:
"Supported by the Defense Advanced Research Projects Agency ... and the National Bureau of Standards."
Resumo:
We present theory and simulations for a spectral narrowing scheme for laser diode arrays (LDAs) that employs optical feedback from a diffraction grating. We calculate the effect of the so-called smile of the LDA and show that it is possible to reduce the effect by using a cylindrical lens set at an angle to the beam. The scheme is implemented on a 19-element LDA with smile of 7.6 mu m and yields frequency narrowing from a free-running width of 2 to 0.15 nm. The experimental results are in good agreement with the theory. (c) 2005 Optical Society of America.
Resumo:
We measured the optical linewidths of a passively mode-locked quantum dot laser and show that, in agreement with theoretical predictions, the modal linewidth exhibits a parabolic dependence with the mode optical frequency. The minimum linewidth follows a Schawlow-Townes behavior with a rebroadening at high power. In addition, the slope of the parabola is proportional to the RF linewidth of the laser and can therefore provide a direct measurement of the timing jitter. Such a measurement could be easily applied to mode-locked semiconductor lasers with a fast repetition rate where the RF linewidth cannot be directly measured.
Resumo:
In this paper, we present a novel 1x2 multi-mode-interferometer-Fabry-Perot (MMI-FP) laser diode, which demonstrated tunable single frequency operation with more than 30dB side mode suppression ratio (SMSR) and a tuning range of 25nm in the C and L bands, as well as a 750 kHz linewidth. These lasers do not require material regrowth and high resolution gratings; resulting in a simpler process that can significantly increase the yield and reduce the cost.
Resumo:
A phase shift proximity printing lithographic mask is designed, manufactured and tested. Its design is based on a Fresnel computer-generated hologram, employing the scalar diffraction theory. The obtained amplitude and phase distributions were mapped into discrete levels. In addition, a coding scheme using sub-cells structure was employed in order to increase the number of discrete levels, thus increasing the degree of freedom in the resulting mask. The mask is fabricated on a fused silica substrate and an amorphous hydrogenated carbon (a:C-H) thin film which act as amplitude modulation agent. The lithographic image is projected onto a resist coated silicon wafer, placed at a distance of 50 mu m behind the mask. The results show a improvement of the achieved resolution - linewidth as good as 1.5 mu m - what is impossible to obtain with traditional binary masks in proximity printing mode. Such achieved dimensions can be used in the fabrication of MEMS and MOEMS devices. These results are obtained with a UV laser but also with a small arc lamp light source exploring the partial coherence of this source. (C) 2010 Optical Society of America
Resumo:
The transition of plasmons from propagating to localized state was studied in disordered systems formed in GaAs/AlGaAs superlattices by impurities and by artificial random potential. Both the localization length and the linewidth of plasmons were measured by Raman scattering. The vanishing dependence of the plasmon linewidth on the disorder strength was shown to be a manifestation of the strong plasmon localization. The theoretical approach based on representation of the plasmon wave function in a Gaussian form well accounted for by the obtained experimental data.