932 resultados para LIGAND-BASED DRUG DESIGN


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drug discovery has moved toward more rational strategies based on our increasing understanding of the fundamental principles of protein-ligand interactions. Structure( SBDD) and ligand-based drug design (LBDD) approaches bring together the most powerful concepts in modern chemistry and biology, linking medicinal chemistry with structural biology. The definition and assessment of both chemical and biological space have revitalized the importance of exploring the intrinsic complementary nature of experimental and computational methods in drug design. Major challenges in this field include the identification of promising hits and the development of high-quality leads for further development into clinical candidates. It becomes particularly important in the case of neglected tropical diseases (NTDs) that affect disproportionately poor people living in rural and remote regions worldwide, and for which there is an insufficient number of new chemical entities being evaluated owing to the lack of innovation and R&D investment by the pharmaceutical industry. This perspective paper outlines the utility and applications of SBDD and LBDD approaches for the identification and design of new small-molecule agents for NTDs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peroxisome-proliferator-activated receptors are a class of nuclear receptors with three subtypes: a, ? and d. Their main function is regulating gene transcription related to lipid and carbohydrate metabolism. Currently, there are no peroxisome-proliferator-activated receptors d drugs being marketed. In this work, we studied a data set of 70 compounds with a and d activity. Three partial least square models were created, and molecular docking studies were performed to understand the main reasons for peroxisome-proliferator-activated receptors d selectivity. The obtained results showed that some molecular descriptors (log P, hydration energy, steric and polar properties) are related to the main interactions that can direct ligands to a particular peroxisome-proliferator-activated receptors subtype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enot, D. and King, R. D. (2003) Application of Inductive Logic Programming to Structure-Based Drug Design. 7th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD '03). Springer LNAI 2838 p156-167

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A ligand-based drug design study was performed to acetaminophen regioisomers as analgesic candidates employing quantum chemical calculations at the DFT/B3LYP level of theory and the 6-31G* basis set. To do so, many molecular descriptors were used such as highest occupied molecular orbital, ionization potential, HO bond dissociation energies, and spin densities, which might be related to quench reactivity of the tyrosyl radical to give N-acetyl-p-benzosemiquinone-imine through an initial electron withdrawing or hydrogen atom abstraction. Based on this in silico work, the most promising molecule, orthobenzamol, was synthesized and tested. The results expected from the theoretical prediction were confirmed in vivo using mouse models of nociception such as writhing, paw licking, and hot plate tests. All biological results suggested an antinociceptive activity mediated by opioid receptors. Furthermore, at 90 and 120 min, this new compound had an effect that was comparable to morphine, the standard drug for this test. Finally, the pharmacophore model is discussed according to the electronic properties derived from quantum chemistry calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

David P. Enot and Ross D. King (2003). Structure based drug design with inductive logic programming. The ACS National Meeting Spring 2003, New Orleans

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human African trypanosomiasis, also known as sleeping sickness, is a major cause of death in Africa, and for which there are no safe and effective treatments available. The enzyme aldolase from Trypanosoma brucei is an attractive, validated target for drug development. A series of alkyl‑glycolamido and alkyl-monoglycolate derivatives was studied employing a combination of drug design approaches. Three-dimensional quantitative structure-activity relationships (3D QSAR) models were generated using the comparative molecular field analysis (CoMFA). Significant results were obtained for the best QSAR model (r2 = 0.95, non-cross-validated correlation coefficient, and q2 = 0.80, cross-validated correlation coefficient), indicating its predictive ability for untested compounds. The model was then used to predict values of the dependent variables (pKi) of an external test set,the predicted values were in good agreement with the experimental results. The integration of 3D QSAR, molecular docking and molecular dynamics simulations provided further insight into the structural basis for selective inhibition of the target enzyme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chagas` disease is a parasitic infection widely distributed throughout Latin America, with devastating consequences in terms of human morbidity and mortality. Cruzain, the major cysteine protease from Trypanosoma cruzi, is an attractive target for antitrypanosomal chemotherapy. In the present work, classical two-dimensional quantitative structure-activity relationships (2D QSAR) and hologram QSAR (HQSAR) studies were performed on a training set of 45 thiosemicarbazone and semicarbazone derivatives as inhibitors of T. cruzi cruzain. Significant statistical models (HQSAR, q2=0.75 and r2=0.96; classical QSAR, q2=0.72 and r2=0.83) were obtained, indicating their consistency for untested compounds. The models were then used to evaluate an external test set containing 10 compounds which were not included in the training set, and the predicted values were in good agreement with the experimental results (HQSAR, [image omitted]=0.95; classical QSAR, [image omitted]=0.91), indicating the existence of complementary between the two ligand-based drug design techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hemeprotein myeloperoxidase (MPO) participates in innate immune defense through its ability to generate potent microbicidal oxidants. However, these oxidants are also key mediators of the tissue damage associated with many inflammatory diseases. Thus, there is considerable interest in developing therapeutically useful MPO inhibitors. Here, we used structure-based drug design (SBDD) and ligand-based drug design (LBDD) to select for potentially new and selective MPO inhibitors. A pharmacophore model was developed based on the crystal structure of human MPO in complex with salicylhydroxamic acid (SHA), a known inhibitor of the enzyme. The pharmacophore model was used to screen the ZINC database for potential ligands, which were further filtered on the basis of their physical-chemical properties and docking score. The filtered compounds were visually inspected, and nine were purchased for experimental studies. Surprisingly, almost all of the selected compounds belonged to the aromatic hydrazide class, which had been previously described as MPO inhibitors. The compounds selected by virtual screening were shown to inhibit the chlorinating activity of MPO; the top four compounds displayed IC(50) values ranging from 1.0 to 2.8 mM. MPO inactivation by the most effective compound was shown to be irreversible. Overall, our results show that SBDD and LBDD may be useful for the rational development of new MPO inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nine membrane-bound isoforms of adenylyl cyclase (AC), via synthesis of the signaling molecule cyclic AMP (cAMP), are involved in many isoform specific physiological functions. Decreasing AC5 activity has been shown to have potential therapeutic benefit, including reduced stress on the heart, pain relief, and attenuation of morphine dependence and withdrawal behaviors. However, AC structure is well conserved, and there are currently no isoform selective AC inhibitors in clinical use. P-site inhibitors inhibit AC directly at the catalytic site, but with an uncompetitive or noncompetitive mechanism. Due to this mechanism and nanomolar potency in cell-free systems, attempts at ligand-based drug design of novel AC inhibitors frequently use P-site inhibitors as a starting template. One small molecule inhibitor designed through this process, NKY80, is described as an AC5 selective inhibitor with low micromolar potency in vitro. P-site inhibitors reveal important ligand binding “pockets” in the AC catalytic site, but specific interactions that give NKY80 selectivity are unclear. Identifying and characterizing unique interactions between NKY80 and AC isoforms would significantly aid the development of isoform selective AC inhibitors. I hypothesized that NKY80’s selective inhibition is conferred by AC isoform specific interactions with the compound within the catalytic site. A structure-based virtual screen of the AC catalytic site was used to identify novel small molecule AC inhibitors. Identified novel inhibitors are isoform selective, supporting the catalytic site as a region capable of more potent isoform selective inhibition. Although NKY80 is touted commercially as an AC5 selective inhibitor, its characterization suggests strong inhibition of both AC5 and the closely related AC6. NKY80 was also virtually docked to AC to determine how NKY80 binds to the catalytic site. My results show a difference between NKY80 binding and the conformation of classic P-site inhibitors. The selectivity and notable differences in NKY80 binding to the AC catalytic site suggest a catalytic subregion more flexible in AC5 and AC6 that can be targeted by selective small molecule inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crystal structure of trans-atovaquone (antimalarial drug), its polymorph and its stereoisomer (cis) along with five other derivatives with different functional groups have been analyzed. Based on the conformational features of these compounds and the characteristics of the nature of intermolecular interactions, valuable insights into the atomistic details of protein-inhibitor interactions have been derived by docking studies. Atovaquone and its derivatives pack in the crystal lattice using intermolecular O-H center dot center dot center dot O hydrogen bond dimer motifs supported by surrogate weak interactions including C-H center dot center dot center dot O and C-H center dot center dot center dot Cl hydrogen bonds. The docking results of these molecules with cytochrome bc(1) show preferences to form N-H center dot center dot center dot O, O-H center dot center dot center dot O and O-H center dot center dot center dot Cl hydrogen bonds. The involvement of halogen atoms in the binding pocket appears to be significant and is contrary to the theoretically predicted mechanism of protein-ligand docking reported earlier based on mimicking experimental binding results of stigmatellin with cytochrome bc(1). The significance of subtle energy factors controlled by weak intermolecular interactions appears to play a major role in drug binding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All biological phenomena depend on molecular recognition, which is either intermolecular like in ligand binding to a macromolecule or intramolecular like in protein folding. As a result, understanding the relationship between the structure of proteins and the energetics of their stability and binding with others (bio)molecules is a very interesting point in biochemistry and biotechnology. It is essential to the engineering of stable proteins and to the structure-based design of pharmaceutical ligands. The parameter generally used to characterize the stability of a system (the folded and unfolded state of the protein for example) is the equilibrium constant (K) or the free energy (deltaG(o)), which is the sum of enthalpic (deltaH(o)) and entropic (deltaS(o)) terms. These parameters are temperature dependent through the heat capacity change (deltaCp). The thermodynamic parameters deltaH(o) and deltaCp can be derived from spectroscopic experiments, using the van't Hoff method, or measured directly using calorimetry. Along with isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC) is a powerful method, less described than ITC, for measuring directly the thermodynamic parameters which characterize biomolecules. In this article, we summarize the principal thermodynamics parameters, describe the DSC approach and review some systems to which it has been applied. DSC is much used for the study of the stability and the folding of biomolecules, but it can also be applied in order to understand biomolecular interactions and can thus be an interesting technique in the process of drug design.