934 resultados para LEAF-AREA INDEX
Resumo:
A wide range of models used in agriculture, ecology, carbon cycling, climate and other related studies require information on the amount of leaf material present in a given environment to correctly represent radiation, heat, momentum, water, and various gas exchanges with the overlying atmosphere or the underlying soil. Leaf area index (LAI) thus often features as a critical land surface variable in parameterisations of global and regional climate models, e.g., radiation uptake, precipitation interception, energy conversion, gas exchange and momentum, as all areas are substantially determined by the vegetation surface. Optical wavelengths of remote sensing are the common electromagnetic regions used for LAI estimations and generally for vegetation studies. The main purpose of this dissertation was to enhance the determination of LAI using close-range remote sensing (hemispherical photography), airborne remote sensing (high resolution colour and colour infrared imagery), and satellite remote sensing (high resolution SPOT 5 HRG imagery) optical observations. The commonly used light extinction models are applied at all levels of optical observations. For the sake of comparative analysis, LAI was further determined using statistical relationships between spectral vegetation index (SVI) and ground based LAI. The study areas of this dissertation focus on two regions, one located in Taita Hills, South-East Kenya characterised by tropical cloud forest and exotic plantations, and the other in Gatineau Park, Southern Quebec, Canada dominated by temperate hardwood forest. The sampling procedure of sky map of gap fraction and size from hemispherical photographs was proven to be one of the most crucial steps in the accurate determination of LAI. LAI and clumping index estimates were significantly affected by the variation of the size of sky segments for given zenith angle ranges. On sloping ground, gap fraction and size distributions present strong upslope/downslope asymmetry of foliage elements, and thus the correction and the sensitivity analysis for both LAI and clumping index computations were demonstrated. Several SVIs can be used for LAI mapping using empirical regression analysis provided that the sensitivities of SVIs at varying ranges of LAI are large enough. Large scale LAI inversion algorithms were demonstrated and were proven to be a considerably efficient alternative approach for LAI mapping. LAI can be estimated nonparametrically from the information contained solely in the remotely sensed dataset given that the upper-end (saturated SVI) value is accurately determined. However, further study is still required to devise a methodology as well as instrumentation to retrieve on-ground green leaf area index . Subsequently, the large scale LAI inversion algorithms presented in this work can be precisely validated. Finally, based on literature review and this dissertation, potential future research prospects and directions were recommended.
Some quantitative relationships between leaf area index and canopy nitrogen content and distribution
Resumo:
This work aimed to assess how potassium (K) and nitrogen (N) fertilisation may affect the use of precipitation in terms of vegetative and flowering response of 15-year-old carob trees during a 3-year experiment. A field trial was conducted in 1997, 1998 and 1999 in Algarve (Southern Portugal) in a calcareous soil. Four fertilisation treatments were tested: no fertiliser (control); 0.8 kg N/tree (N treatment); 1 kg K 2 O/tree (K treatment) and 0.8 kg N/tree plus 1 kg K 2 O/tree (NK treatment). No irrigation was applied during the experimental period. Branch length increments were measured every month throughout the growing season and inflorescence number was registered once per year. There was a strong seasonal effect on vegetative growth, since low levels of precipitation (115 mm) during October 1998–March 1999 suppressed the increment in branch length. N supplied to the trees (N and NK treatments) tended to increase water use indices in terms of vegetative growth. No response to K alone was observed in trees fertilised only with K. The number of inflorescences increased throughout the experimental period, particularly for N and NK treatments, and a reduction of the precipitation amount during April, May and June, may also enhance flowering. This knowledge could be important when making decisions concerning fertilisation under dry conditions. The results reported here indicate that tree growth (expressed as the branch growth) and flower production under dry-farming conditions, may be achieved by applying 0.8 kg of N (as ammonium nitrate) per tree during the growing season. However, N uptake and use depends on soil water availability.
Resumo:
Canopy leaf area index (LAI), defined as the single-sided leaf area per unit ground area, is a quantitative measure of canopy foliar area. LAI is a controlling biophysical property of vegetation function, and quantifying LAI is thus vital for understanding energy, carbon and water fluxes between the land surface and the atmosphere. LAI is routinely available from Earth Observation (EO) instruments such as MODIS. However EO-derived estimates of LAI require validation before they are utilised by the ecosystem modelling community. Previous validation work on the MODIS collection 4 (c4) product suggested considerable error especially in forested biomes, and as a result significant modification of the MODIS LAI algorithm has been made for the most recent collection 5 (c5). As a result of these changes the current MODIS LAI product has not been widely validated. We present a validation of the MODIS c5 LAI product over a 121 km2 area of mixed coniferous forest in Oregon, USA, based on detailed ground measurements which we have upscaled using high resolution EO data. Our analysis suggests that c5 shows a much more realistic temporal LAI dynamic over c4 values for the site we examined. We find improved spatial consistency between the MODIS c5 LAI product and upscaled in situ measurements. However results also suggest that the c5 LAI product underestimates the upper range of upscaled in situ LAI measurements.
Resumo:
This study has compared preliminary estimates of effective leaf area index (LAI) derived from fish-eye lens photographs to those estimated from airborne full-waveform small-footprint LiDAR data for a forest dataset in Australia. The full-waveform data was decomposed and optimized using a trust-region-reflective algorithm to extract denser point clouds. LAI LiDAR estimates were derived in two ways (1) from the probability of discrete pulses reaching the ground without being intercepted (point method) and (2) from raw waveform canopy height profile processing adapted to small-footprint laser altimetry (waveform method) accounting for reflectance ratio between vegetation and ground. The best results, that matched hemispherical photography estimates, were achieved for the waveform method with a study area-adjusted reflectance ratio of 0.4 (RMSE of 0.15 and 0.03 at plot and site level, respectively). The point method generally overestimated, whereas the waveform method with an arbitrary reflectance ratio of 0.5 underestimated the fish-eye lens LAI estimates.
Resumo:
European beech (Fagus sylvatica L.) and Norway spruce (Picea abies Karst.) are two of the most ecologically and economically important forest tree species in Europe. These two species co-occur in many locations in Europe, leading to direct competition for canopy space. Foliage characteristics of two naturally regenerated pure stands of beech and spruce with fully closed canopies were contrasted to assess the dynamic relationship between foliage adaptability to shading, stand LAI and tree growth. We found that individual leaf size is far more conservative in spruce than in beech. Individual leaf and needle area was larger at the top than at the bottom of the canopy in both species. Inverse relationship was found for specific leaf area (SLA), highest SLA values were found at lowest light availability under the canopy. There was no difference in leaf area index (LAI) between the two stands, however LAI increased from 10.8 to 14.6 m2m-2 between 2009 and 2011. Dominant trees of both species were more efficient in converting foliage mass or area to produce stem biomass, although this relationship changed with age and was species-specific. Overall, we found larger foliage plasticity in beech than in spruce in relation to light conditions, indicating larger capacity to exploit niche openings.
An improved estimate of leaf area index based on the histogram analysis of hemispherical photographs
Resumo:
Leaf area index (LAI) is a key parameter that affects the surface fluxes of energy, mass, and momentum over vegetated lands, but observational measurements are scarce, especially in remote areas with complex canopy structure. In this paper we present an indirect method to calculate the LAI based on the analyses of histograms of hemispherical photographs. The optimal threshold value (OTV), the gray-level required to separate the background (sky) and the foreground (leaves), was analytically calculated using the entropy crossover method (Sahoo, P.K., Slaaf, D.W., Albert, T.A., 1997. Threshold selection using a minimal histogram entropy difference. Optical Engineering 36(7) 1976-1981). The OTV was used to calculate the LAI using the well-known gap fraction method. This methodology was tested in two different ecosystems, including Amazon forest and pasturelands in Brazil. In general, the error between observed and calculated LAI was similar to 6%. The methodology presented is suitable for the calculation of LAI since it is responsive to sky conditions, automatic, easy to implement, faster than commercially available software, and requires less data storage. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The objective of this study was to evaluate the structure of Tanzania grassland grazed by goats managed with different residue leaf area index (RLAI) under intermittent stocking. The experiment was carried out from February to August, 2008. The treatments consisted of three different targets RLAI (0.8, 1.6 and 2.4) and 95% light interception (LI) criterion determined the rest period. Forage samples were collected at average height sampling points and weighed. Subsequently, a smaller sample was removed to separate the morphological components (leaf, stem and dead material) and to determine the structural and productive features. The canopy architecture was evaluated by the method of inclined point quadrat. The pre-grazing height in the paddocks were significantly different among treatments. RLAI influenced dry matter contents of green forage, leaf, stem and total, with the exception of dry matter of dead material, where the lowest values were observed for 0.8 RLAI. Thus, RLAI modifies canopy structure and is sensitive to canopy height changes throughout the year. Pasture regrowth is not compromised by residual leaf area indexes between 0.8 and 2.4, when climatic factors are not limiting.
Resumo:
The leaf area index (LAI) is a key characteristic of forest ecosystems. Estimations of LAI from satellite images generally rely on spectral vegetation indices (SVIs) or radiative transfer model (RTM) inversions. We have developed a new and precise method suitable for practical application, consisting of building a species-specific SVI that is best-suited to both sensor and vegetation characteristics. Such an SVI requires calibration on a large number of representative vegetation conditions. We developed a two-step approach: (1) estimation of LAI on a subset of satellite data through RTM inversion; and (2) the calibration of a vegetation index on these estimated LAI. We applied this methodology to Eucalyptus plantations which have highly variable LAI in time and space. Previous results showed that an RTM inversion of Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared and red reflectance allowed good retrieval performance (R-2 = 0.80, RMSE = 0.41), but was computationally difficult. Here, the RTM results were used to calibrate a dedicated vegetation index (called "EucVI") which gave similar LAI retrieval results but in a simpler way. The R-2 of the regression between measured and EucVI-simulated LAI values on a validation dataset was 0.68, and the RMSE was 0.49. The additional use of stand age and day of year in the SVI equation slightly increased the performance of the index (R-2 = 0.77 and RMSE = 0.41). This simple index opens the way to an easily applicable retrieval of Eucalyptus LAI from MODIS data, which could be used in an operational way.
Resumo:
Canopy characterization is essential for describing the interaction of a crop with its environment. The goal of this work was to determine the relationship between leaf area index (LAI) and ground cover (GC) in a grass, a legume and a crucifer crop, and to assess the feasibility of using these relationships as well as LAI-2000 readings to estimate LAI. Twelve plots were sown with either barley (Hordeum vulgare L.), vetch (Vicia sativa L.), or rape (Brassica napus L.). On 10 sampling dates the LAI (both direct and LAI-2000 estimations), fraction intercepted of photosynthetically active radiation (FIPAR) and GC were measured. Linear and quadratic models fitted to the relationship between the GC and LAI for all of the crops, but they reached a plateau in the grass when the LAI mayor que 4. Before reaching full cover, the slope of the linear relationship between both variables was within the range of 0.025 to 0.030. The LAI-2000 readings were linearly correlated with the LAI but they tended to overestimation. Corrections based on the clumping effect reduced the root mean square error of the estimated LAI from the LAI-2000 readings from 1.2 to less than 0.50 for the crucifer and the legume, but were not effective for barley.