844 resultados para LDPE Blends


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microcellular (MC) soles based on polybutadiene (BR) and low-density polyethylene (LDPE) blends for low-temperature applications were developed. A part of BR in BR-LDPE blend was replaced by natural rubber (NR) for property improvement. The BR-NR-LDPE blend-based MC sole shows good technical properties. Sulphur curing and DCP curing were tried in BR-LDPE and NR-BR-LDPE blends. Study shows that sulphur-cured MC sheets possess better technical properties than DCPcured MC sheets. 90/10 BR-LDPE and 60/30/10 BR-NR-LDPE blend combinations are found to be suitable for low-temperature applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Polymer blends constitute a valuable way to produce relatively low cost new materials. A still open question concerns the miscibility of polyethylene blends. Deviations from the log-additivity rule of the newtonian viscosity are often taken as a signature of immiscibility of the two components. The aim of this thesis is to characterize the rheological behavior in shear and elongation of five series of LLDPE/LDPE blends whose parent polymers have been chosen with different viscosity and SCB content and length. Synergistic effects have been measured for both zero shear viscosity and melt strength. Both SCB length and viscosity ratio between the components have been found to be key parameters for the miscibility of the pure polymers. In particular the miscibility increases with increasing SCB length and with decreasing the LDPE molecular weight and viscosity. This rheological behavior has significant effects on the processability window of these blends when the uni or biaxial elongational flows are involved. The film blowing is one of the processes for which the synergistic effects above mentioned can be crucial. Small scale experiments of film blowing performed for one of the series of blends has demonstrated that the positive deviation of the melt strength enlarges the processability window. In particular, the bubble stability was found to improve or disappear when the melt strength of the samples increased. The blending of LDPE and LLDPE can even reduce undesired melt flow instability phenomena widening, as a consequence, the processability window in extrusion. One of the series of blends has been characterized by means of capillary rheometry in order to allow a careful morphological analysis of the surface of the extruded polymer jets by means of Scanning Electron Microscopy (SEM) with the aim to detect the very early stages of the small scale melt instabilty at low shear rates (sharksin) and to follow its subsequent evolution as long as the shear rate was increased. With this experimental procedure it was possible to evaluate the shear rate ranges corresponding to different flow regions: smooth extrudate surface (absence of instability), sharkskin (small scale instability produced at the capillary exit), stick-slip transition (instability involving the whole capillary wall) and gross melt fracture (i.e. a large scale "upstream" instability originating from the entrance region of the capillary). A quantitative map was finally worked out using which an assessment of the flow type for a given shear rate and blend composition can be predicted.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Low-density polyethylene, (LDPE) was mixed with two grades of tapioca starch–lowgrade and high-grade. Various compositions were prepared and mechanical and thermal studies performed. The biodegradability of these samples was checked using a culture medium containing Vibrios (an amylase-producing bacteria), which was isolated from a marine benthic environment. The soil burial test and reprocessability of these samples were checked. The studies on biodegradability show that these blends are partially biodegradable. These low-density polyethylene-starch blends are reprocessable without sacrificing much of their mechanical properties

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A study was made on the effect of small amounts of organically modified clay on the morphology and mechanical properties of blends of low-density polyethylene and polyamide 11 at different compositions. The influence of the filler on the blend morphology was investigated using wide angle X-ray diffractometry, scanning and transmission electron microscopy and selective extraction experiments. The filler was found to locate predominantly in the more hydrophilic polyamide phase. Although such uneven distribution does not have a significant effect on the onset of phase co-continuity of the polymer components, it brings about a drastic refinement of the microstructure for the blends both with droplets/matrix and co-continuous morphologies. In addition to the expected reinforcing action of the filler, the resulting fine microstructure plays an important role in enhancing the mechanical properties of the blends. This is essentially because of a good quality of stress transfer across the interface between the constituents, which also seems to benefit for a good interfacial adhesion promoted by the filler. Our results provide the experimental evidence for the capabilities of nanoparticles added to multiphase polymer systems to act selectively as a reinforcing agent for specific domains of the material and as a medium able to assist the refinement of the polymer phases during mixing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Samples of LDPE/modified starch blends 80/20 m/m before and after exposure to gamma rays were examined by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. The effect of gamma radiation is clearly seen in the samples irradiated at a dose of 25 kGy. The main alteration in the polymeric material after exposure at the radiation range was a decrease in the mechanical properties, alterations in the chemical structure of the blend with an increase in the carbonyl and vinyl indices and the appearance of new crystalline symmetry generating a crystalline domain not existing before in the blend.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biodegradation is the chemical degradation of materials brought about by the action of naturally occurring microorganisms. Biodegradation is a relatively rapid process under suitable conditions of moisture, temperature and oxygen availability. The logic behind blending biopolymers such as starch with inert polymers like polyethylene is that if the biopolymer component is present in sufficient amount, and if it is removed by microorganisms in the waste disposal environment, then the base inert plastic should slowly degrade and disappear. The present work focuses on the preparation of biodegradable and photodegradable blends based on low density polyethylene incorporating small quantities of ionomers as compatibilizers. The thesis consists of eight chapters. The first chapter presents an introduction to the present research work and literature survey. The details of the materials used and the experimental procedures undertaken for the study are described in the second chapter. Preparation and characterization of low density polyethylene (LDPE)-biopolymer (starch/dextrin) blends are described in the third chapter. The result of investigations on the effect of polyethylene-co-methacrylic acid ionomers on the compatibility of LDPE and starch are reported in chapter 4. Chapter 5 has been divided into two parts. The first part deals with the effect of metal oxides on the photodegradation of LDPE. The second part describes the function of metal stearates on the photodegradation of LDPE. The results of the investigations on the role of various metal oxides as pro-oxidants on the degradation of ionomer compatibilized LDPE-starch blends are reported in chapter 6. Chapter 7 deals with the results of investigations on the role of various metal stearates as pro-oxidants on the degradation of ionomer compatibilized LDPE-starch blends. The conclusion of the investigations is presented in the last chapter of the thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ethylene-vinyl acetate copolymer (EVA) with 19% of vinyl acetate and its derivatives modified by hydrolysis of 50 and 100% of the initial vinyl acetate groups were used to produce blends with thermoplastic starch (TPS) plasticized with 30 wt% glycerol. The blends were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy. X-ray diffraction, water absorption, stress-strain mechanical tests, dynamic mechanical analysis and thermogravimetric analysis. In contrast to the blends with unmodified EVA. those made with hydrolyzed EVA were compatible, as demonstrated by the brittle fracture surface analysis and the results of thermal and mechanical tests. The mechanical characteristics and water absorption of the TPS were improved even with a small addition (2.5 wt%) of hydrolyzed EVA. The glass transition temperature rose with the degree of hydrolysis of EVA by 40 and 50 degrees, for the EVA with 50 and 100% hydrolysis, respectively. The addition of hydrolyzed EVA proved to be an interesting approach to improving TPS properties, even when very small quantities were used, such as 2.5 wt%. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to study the effect of the hydrolysis degree (HD) and the concentration (C PVA) of two types of poly (vinyl alcohol) (PVA) and the effect of the type and the concentration of plasticizers on the phase properties of biodegradable films based on blends of gelatin and PVA, using a response-surface methodology. The films were made by casting and the studied properties were their glass (Tg) and melting (Tm) transition temperatures, which were determined by diferential scanning calorimetry (DSC). For the data obtained on the first scan, the fitting of the linear model was statistically significant and predictive only for the second melting temperature. In this case, the most important effect on the second Tm of the first scan was due to the HD of the PVA. In relation to the second scan, the linear model could be fit to Tg data with only two statistically significant parameters. Both the PVA and plasticizer concentrations had an important effect on Tg. Concerning the second Tm of the second scan, the linear model was fit to data with two statistically significant parameters, namely the HD and the plasticizer concentration. But, the most important effect was provoked by the HD of the PVA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends formed by electrochemical polymerization of polypyrrole (PPy) into polyacrylamide (PAAm) hydrogels were used as devices for controlled drug release. The influence of several parameters in the synthesis, such as type of hydrogel matrix and polymerization conditions was studied by using a fractional factorial design. The final goal was to obtain an adequate device for use in controlled release tests, based on electrochemical potential control. For controlled release tests, Safranin was used as model drug and release curves (amount of drug vs. time) have shown that these blends are promising materials for this use. The optimized blends obtained were characterized by cyclic voltammetry and Raman spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Snacks made by extrusion cooking of pure amaranth flour or mixtures of 80 per cent amaranth flour and 20 per centcorn grits or chickpea flour were developed to replace the traditional commercial ones with improved nutritional and functional quality. Pure amaranth snacks and the blended ones were flavored with salty and sweet flavors and evaluated for acceptability using a 9-point hedonic scale. The good acceptance observed for either salty or sweet flavored snacks indicated that they have characteristics to compete with similar commercial products. Acceptability of salty snacks increased with storage time at room temperature in BOPP (polypropylene bi-guided) packs whereas slightly decreased for the sweet ones. This type of storage proved to be very efficient for the conservation of the salty product and also suitable for the sweet ones

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends of milk fat and canola oil (MF:CNO) were enzymatically interesterified (EIE) by Rhizopus oryzne lipase immobilized on polysiloxane-polyvinyl alcohol (SiO(2)-PVA) composite, in a solvent-free system. A central composite design (CCD) was used to optimize the reaction, considering the effects of different mass fractions of binary blends of MF:CNO (50:50, 65:35 and 80:20) and temperatures (45, 55 and 65 degrees C) on the composition and texture properties of the interesterified products, taking the interesterification degree (ID) and consistency (at 10 degrees C) as response variables. For the ID variable both mass fraction of milk fat in the blend and temperature were found to be significant, while for the consistency only mass fraction of milk fat was significant. Empiric models for ID and consistency were obtained that allowed establishing the best interesterification conditions: blend with 65 % of milk fat and 35 %, of canola oil, and temperature of 45 degrees C. Under these conditions, the ID was 19.77 %) and the consistency at 10 degrees C was 56 290 Pa. The potential of this eco-friendly process demonstrated that a product could be obtained with the desirable milk fat flavour and better spreadability under refrigerated conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Milkfat (MF)/soybean oil (SBO) blends ranging from 50% to 100% of milkfat (w/w) were enzymatically interesterified with a sn-1,3 specific lipase from Rhizopus oryzae immobilized on polysiloxane-polyvinyl alcohol matrix, in a solvent free medium. Interesterification progress was monitored by following the changes in the relative proportions of 50-carbon triacylglycerols (TAGS) to 44-carbon TAGs (50/44 ratio) in the reaction. The starting materials and products were also analyzed in terms of consistency measured in a texturometer. All reactions gave interesterified (IE) products with lower consistency than non-interesterified (NIE) MF:SBO blends and interesterification degree varied from 0.54 to 2.60 in 48 h reaction. The highest interesterification degree was achieved for 65:35 MF:SBO blends, which gave 76% reduction in the consistency. These results showed the potential of the immobilized lipase to change the TAGs profile of the MF:SBO blend allowing to obtain cold-spreadable milkfat. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ternary compatible blends of chitosan, poly(vinyl alcohol), and poly(lactic acid) were prepared by an oil-in-water (O/W) emulsion process. Solutions of chitosan in aqueous acetic acid, poly(vinyl alcohol) (PVA) in water, and poly(lactic acid) (PLA) in chloroform were blended with a high shear mixer. PVA was used as an emulsifier to stabilize the emulsion and to reduce the interfacial tension between the solid polymers in the blends-produced. It proved to work very well because the emulsions were stable for periods of days or weeks and compatible blends were obtained When PVA was added. This effect was attributed to a synergistic effect of PVA and chitosan because the binary blends PVA/PLA and chitosan/PLA were completely incompatible; The blends were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal mechanical analysis (TMA), stress strain tests, and Fourier transform infrared spectroscopy (FTIR). The results indicated that despite the fact that the system contained distinct phases some degree of molecular miscibility occurred when the three components were present in the blend.