866 resultados para LCA methodology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The considerable amount of energy consumed on Earth is a major cause for not achieving sustainable development. Buildings are responsible for the highest worldwide energy consumption, nearly 40%. Strong efforts have been made in what concerns the reduction of buildings operational energy (heating, hot water, ventilation, electricity), since operational energy is so far the highest energy component in a building life cycle. However, as operational energy is being reduced the embodied energy increases. One of the building elements responsible for higher embodied energy consumption is the building structural system. Therefore, the present work is going to study part of embodied energy (initial embodied energy) in building structures using a life cycle assessment methodology, in order to contribute for a greater understanding of embodied energy in buildings structural systems. Initial embodied energy is estimated for a building structure by varying the span and the structural material type. The results are analysed and compared for different stages, and some conclusions are drawn. At the end of this work it was possible to conclude that the building span does not have considerable influence in embodied energy consumption of building structures. However, the structural material type has influence in the overall energetic performance. In fact, with this research it was possible that building structure that requires more initial embodied energy is the steel structure; then the glued laminated timber structure; and finally the concrete structure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new electronic software distribution (ESD) life cycle analysis (LCA)methodology and model structure were constructed to calculate energy consumption and greenhouse gas (GHG) emissions. In order to counteract the use of high level, top-down modeling efforts, and to increase result accuracy, a focus upon device details and data routes was taken. In order to compare ESD to a relevant physical distribution alternative,physical model boundaries and variables were described. The methodology was compiled from the analysis and operational data of a major online store which provides ESD and physical distribution options. The ESD method included the calculation of power consumption of data center server and networking devices. An in-depth method to calculate server efficiency and utilization was also included to account for virtualization and server efficiency features. Internet transfer power consumption was analyzed taking into account the number of data hops and networking devices used. The power consumed by online browsing and downloading was also factored into the model. The embedded CO2e of server and networking devices was proportioned to each ESD process. Three U.K.-based ESD scenarios were analyzed using the model which revealed potential CO2e savings of 83% when ESD was used over physical distribution. Results also highlighted the importance of server efficiency and utilization methods.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

La bonifica di acquiferi contaminati è una pratica che oggi dispone di diverse soluzioni a livello tecnologico, caratterizzate tuttavia da costi (ambientali ed economici) e problematiche tecniche di entità tale da rendere in alcuni casi poco conveniente la realizzazione dell’intervento stesso. Per questo motivo sempre maggiore interesse viene rivolto nell’ambito della ricerca alle tecnologie di bioremediation, ovvero sistemi in cui la degradazione degli inquinanti avviene ad opera di microorganismi e batteri opportunamente selezionati e coltivati. L’impiego di queste tecniche consente un minor utilizzo di risorse ed apparati tecnologici per il raggiungimento degli obiettivi di bonifica rispetto ai sistemi tradizionali. Il lavoro di ricerca presentato in questa tesi ha l’obiettivo di fornire, tramite l’utilizzo della metodologia LCA, una valutazione della performance ambientale di una tecnologia di bonifica innovativa (BEARD) e due tecnologie largamente usate nel settore, una di tipo passivo (Permeable Reactive Barrier) ed una di tipo attivo (Pump and Treat con Carboni Attivi).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Concentrating Solar Power (CSP) plants typically incorporate one or various auxiliary boilers operating in parallel to the solar field to facilitate start up operations, provide system stability, avoid freezing of heat transfer fluid (HTF) and increase generation capacity. The environmental performance of these plants is highly influenced by the energy input and the type of auxiliary fuel, which in most cases is natural gas (NG). Replacing the NG with biogas or biomethane (BM) in commercial CSP installations is being considered as a means to produce electricity that is fully renewable and free from fossil inputs. Despite their renewable nature, the use of these biofuels also generates environmental impacts that need to be adequately identified and quantified. This paper investigates the environmental performance of a commercial wet-cooled parabolic trough 50 MWe CSP plant in Spain operating according to two strategies: solar-only, with minimum technically viable energy non-solar contribution; and hybrid operation, where 12 % of the electricity derives from auxiliary fuels (as permitted by Spanish legislation). The analysis was based on standard Life Cycle Assessment (LCA) methodology (ISO 14040-14040). The technical viability and the environmental profile of operating the CSP plant with different auxiliary fuels was evaluated, including: NG; biogas from an adjacent plant; and BM withdrawn from the gas network. The effect of using different substrates (biowaste, sewage sludge, grass and a mix of biowaste with animal manure) for the production of the biofuels was also investigated. The results showed that NG is responsible for most of the environmental damage associated with the operation of the plant in hybrid mode. Replacing NG with biogas resulted in a significant improvement of the environmental performance of the installation, primarily due to reduced impact in the following categories: natural land transformation, depletion of fossil resources, and climate change. However, despite the renewable nature of the biofuels, other environmental categories like human toxicity, eutrophication, acidification and marine ecotoxicity scored higher when using biogas and BM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Until now health impact assessment and environmental impact assessment are two different issues, often not addressed together. Both issues have to be dealt with for sustainable building. The aim of this paper is to link healthy and sustainable housing in life cycle assessment. Two strategies are studied: clean air as a functional unity and health as a quality indicator. The strategies are illustrated with an example on the basis of Eco-Quantum, which is a Dutch whole-building assessment tool. It turns out that both strategies do not conflict with the LCA methodology. The LCA methodology has to be refined for this purpose.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Manufacture, construction and use of buildings and building materials make a significant environmental impact internally (inside the building), locally (neighbourhood) and globally. Life cycle assessment (LCA) methodology is being applied for evaluating the environmental impact of building/or building materials. One of the major applications of LCA is to identify key issues of a product system from cradle to grave. Key issues identified in an LCA lead one to the right direction in assessing the environmental aspects of a product system and help to identify the areas for improvement of the environmental performance of a product as well. The purpose of this paper is to suggest two methods for identifying key issues using an integrated tool (LCADesign), which has been developed to provide a method of determining the best alternative for reducing environmental impacts from a building or building materials, and compare both methods in the case study. This paper assists the designers or marketers related to building or building materials in their decision making by giving information on activities or alternatives which are identified as key issues for environmental impacts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The construction industry is one of the largest sources of carbon emissions. Manufacturing of raw materials, such as cement, steel and aluminium, is energy intensive and has considerable impact on carbon emissions level. Due to the rising recognition of global climate change, the industry is under pressure to reduce carbon emissions. Carbon labelling schemes are therefore developed as meaningful yardsticks to measure and compare carbon emissions. Carbon labelling schemes can help switch consumer-purchasing habits to low-carbon alternatives. However, such switch is dependent on a transparent scheme. The principle of transparency is highlighted in all international greenhouse gas (GHG) standards, including the newly published ISO 14067: Carbon footprint of products – requirements and guidelines for quantification and communication. However, there are few studies which systematically investigate the transparency requirements in carbon labelling schemes. A comparison of five established carbon labelling schemes, namely the Singapore Green Labelling Scheme, the CarbonFree (the U.S.), the CO2 Measured Label and the Reducing CO2 Label (UK), the CarbonCounted (Canada), and the Hong Kong Carbon Labelling Scheme is therefore conducted to identify and investigate the transparency requirements. The results suggest that the design of current carbon labels have transparency issues relating but not limited to the use of a single sign to represent the comprehensiveness of the carbon footprint. These transparency issues are partially caused by the flexibility given to select system boundary in the life cycle assessment (LCA) methodology to measure GHG emissions. The primary contribution of this study to the construction industry is to reveal the transparency requirements from international GHG standards and carbon labels for construction products. The findings also offer five key strategies as practical implications for the global community to improve the performance of current carbon labelling schemes on transparency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Life Cycle Assessment (LCA) is a chain-oriented tool to evaluate the environment performance of products focussing on the entire life cycle of these products: from the extraction of resources, via manufacturing and use, to the final processing of the disposed products. Through all these stages consumption of resources and pollutant releases to air, water, soil are identified and quantified in Life Cycle Inventory (LCI) analysis. Subsequently to the LCI phase follows the Life Cycle Impact Assessment (LCIA) phase; that has the purpose to convert resource consumptions and pollutant releases in environmental impacts. The LCIA aims to model and to evaluate environmental issues, called impact categories. Several reports emphasises the importance of LCA in the field of ENMs. The ENMs offer enormous potential for the development of new products and application. There are however unanswered questions about the impacts of ENMs on human health and the environment. In the last decade the increasing production, use and consumption of nanoproducts, with a consequent release into the environment, has accentuated the obligation to ensure that potential risks are adequately understood to protect both human health and environment. Due to its holistic and comprehensive assessment, LCA is an essential tool evaluate, understand and manage the environmental and health effects of nanotechnology. The evaluation of health and environmental impacts of nanotechnologies, throughout the whole of their life-cycle by using LCA methodology. This is due to the lack of knowledge in relation to risk assessment. In fact, to date, the knowledge on human and environmental exposure to nanomaterials, such ENPs is limited. This bottleneck is reflected into LCA where characterisation models and consequently characterisation factors for ENPs are missed. The PhD project aims to assess limitations and challenges of the freshwater aquatic ecotoxicity potential evaluation in LCIA phase for ENPs and in particular nanoparticles as n-TiO2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the PhD program in chemistry, curriculum in environmental chemistry, at the University of Bologna the sustainability of industry was investigated through the application of the LCA methodology. The efforts were focused on the chemical sector in order to investigate reactions dealing with the Green Chemistry and Green Engineering principles, evaluating their sustainability in comparison with traditional pathways by a life cycle perspective. The environmental benefits associated with a reduction in the synthesis steps and the use of renewable feedstock were assessed through a holistic approach selecting two case studies with high relevance from an industrial point of view: the synthesis of acrylonitrile and the production of acrolein. The current approach wants to represent a standardized application of LCA methodology to the chemical sector, which could be extended to several case studies, and also an improvement of the current databases, since the lack of data to fill the inventories of the chemical productions represent a huge limitation, difficult to overcome and that can affects negatively the results of the studies. Results emerged from the analyses confirms that the sustainability in the chemical sector should be evaluated from a cradle-to-gate approach, considering all the stages and flows involved in each pathways in order to avoid shifting the environmental burdens from a steps to another. Moreover, if possible, LCA should be supported by other tools able to investigate the other two dimensions of sustainability represented by the social and economic issues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La aplicación de criterios de sostenibilidad ha de entenderse como el procedimiento esencial para la necesaria reconversión del sector de la construcción, que movilizando el 10% de la economía mundial, representa más de la tercera parte del consumo mundial de recursos, en torno al 30-40% del consumo energético y emisiones de gases de efecto invernadero, 30-40% de la generación de residuos y el 12% de todo el gasto en agua dulce del planeta. La presente investigación se enmarca en una estrategia general de promover la evaluación de la sostenibilidad en la edificación en el contexto español, dando un primer paso centrado en la evaluación del comportamiento ambiental. El hilo conductor de la investigación parte de la necesidad de establecer un marco teórico de sostenibilidad, que permita clarificar conceptos y definir criterios de valoración adecuados. Como siguiente paso, la investigación se dirige a la revisión del panorama internacional de normativa e instrumentos voluntarios, con el objetivo de clarificar el difuso panorama que caracteriza a la sostenibilidad en el sector de la edificación en la actualidad y enmarcar la investigación en un contexto de políticas y programaciones ya existentes. El objetivo principal reside en el planteamiento de una metodología de evaluación de los aspectos o impactos ambientales asociados al ciclo de vida de la edificación, aplicable al contexto español, como una de las tres dimensiones que constituyen los pilares básicos de la sostenibilidad. Los ámbitos de evaluación de los aspectos sociales y económicos, para los que no existe actualmente un grado de definición metodológico suficientemente congruente, son adicionalmente examinados, de cara a ofrecer una visión holística de la evaluación. Previo al desarrollo de la propuesta, se aborda, en primer lugar, la descripción de las características básicas y limitaciones de la metodología de Análisis de Ciclo de Vida (ACV), para posteriormente proceder a profundizar en el estado del arte de aplicación de ACV a la edificación, realizando una revisión crítica de los trabajos de investigación que han sido desarrollados en los últimos años. Esta revisión permite extraer conclusiones sobre su grado de coherencia con el futuro entorno normativo e identificar dos necesidades prioritarias de actuación: -La necesidad de armonización, dadas las fuertes inconsistencias metodológicas detectadas, que imposibilitan la comparación de los resultados obtenidos en los trabajos de evaluación. -La necesidad de simplificación, dada la complejidad inherente a la evaluación, de modo que, manteniendo el máximo rigor, sea viable su aplicación práctica en el contexto español. A raíz de la participación en los trabajos de desarrollo normativo a nivel europeo, se ha adquirido una visión crítica sobre las implicaciones metodológicas de la normativa en definición, que permite identificar la hoja de ruta que marcará el escenario europeo en los próximos años. La definición de la propuesta metodológica integra los principios generales de aplicación de ACV con el protocolo metodológico establecido en la norma europea, considerando adicionalmente las referencias normativas de las prácticas constructivas en el contexto español. En el planteamiento de la propuesta se han analizado las posibles simplificaciones aplicables, con el objetivo de hacer viable su implementación, centrando los esfuerzos en la sistematización del concepto de equivalente funcional, el establecimiento de recomendaciones sobre el tipo de datos en función de su disponibilidad y la revisión crítica de los modelos de cálculo de los impactos ambientales. Las implicaciones metodológicas de la propuesta se describen a través de una serie de casos de estudio, que ilustran su viabilidad y las características básicas de aplicación. Finalmente, se realiza un recorrido por los aspectos que han sido identificados como prioritarios en la conformación del escenario de perspectivas futuras, líneas de investigación y líneas de acción. Abstract Sustainability criteria application must be understood as the essential procedure for the necessary restructuring of the construction sector, which mobilizes 10% of the world economy, accounting for more than one third of the consumption of the world's resources, around 30 - 40% of energy consumption and emissions of greenhouse gases, 30-40% of waste generation and 12% of all the fresh water use in the world. This research is in line with an overall strategy to promote the sustainability assessment of building in the Spanish context, taking a first step focused on the environmental performance assessment. The thread of the present research sets out from the need to establish a theoretical framework of sustainability which clarifies concepts and defines appropriate endpoints. As a next step, the research focuses on the review of the international panorama regulations and voluntary instruments, with the aim of clarifying the fuzzy picture that characterizes sustainability in the building sector at present while framing the research in the context of existing policies and programming. The main objective lies in the approach of a methodology for the assessment of the environmental impacts associated with the life cycle of building, applicable to the Spanish context, as one of the three dimensions that constitute the pillars of sustainability. The areas of assessment of social and economic issues, for which there is currently a degree of methodological definition consistent enough, are further examined, in order to provide a holistic view of the assessment. The description of the basic features and limitations of the methodology of Life Cycle Assessment (LCA) are previously addressed, later proceeding to deepen the state of the art of LCA applied to the building sector, conducting a critical review of the research works that have been developed in recent years. This review allows to establish conclusions about the degree of consistency with the future regulatory environment and to identify two priority needs for action: - The need for harmonization, given the strong methodological inconsistencies detected that prevent the comparison of results obtained in assessment works. - The need for simplification, given the inherent complexity of the assessment, so that, while maintaining the utmost rigor, make the practical application feasible in the Spanish context. The participation in the work of policy development at European level has helped to achieve a critical view of the methodological implications of the rules under debate, identifying the roadmap that will mark the European scene in the coming years. The definition of the proposed methodology integrates the general principles of LCA methodology with the protocol established in the European standard, also considering the regulatory standards to construction practices in the Spanish context. In the proposed approach, possible simplifications applicable have been analyzed, in order to make its implementation possible, focusing efforts in systematizing the functional equivalent concept, establishing recommendations on the type of data based on their availability and critical review of the calculation models of environmental impacts. The methodological implications of the proposal are described through a series of case studies, which illustrate the feasibility and the basic characteristics of its application. Finally, the main aspects related to future prospects, research lines and lines of action that have been identified as priorities are outlined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose Concentrating Solar Power (CSP) plants based on parabolic troughs utilize auxiliary fuels (usually natural gas) to facilitate start-up operations, avoid freezing of HTF and increase power output. This practice has a significant effect on the environmental performance of the technology. The aim of this paper is to quantify the sustainability of CSP and to analyse how this is affected by hybridisation with different natural gas (NG) inputs. Methods A complete Life Cycle (LC) inventory was gathered for a commercial wet-cooled 50 MWe CSP plant based on parabolic troughs. A sensitivity analysis was conducted to evaluate the environmental performance of the plant operating with different NG inputs (between 0 and 35% of gross electricity generation). ReCiPe Europe (H) was used as LCA methodology. CML 2 baseline 2000 World and ReCiPe Europe E were used for comparative purposes. Cumulative Energy Demands (CED) and Energy Payback Times (EPT) were also determined for each scenario. Results and discussion Operation of CSP using solar energy only produced the following environmental profile: climate change 26.6 kg CO2 eq/KWh, human toxicity 13.1 kg 1,4-DB eq/KWh, marine ecotoxicity 276 g 1,4-DB eq/KWh, natural land transformation 0.005 m2/KWh, eutrophication 10.1 g P eq/KWh, acidification 166 g SO2 eq/KWh. Most of these impacts are associated with extraction of raw materials and manufacturing of plant components. The utilization NG transformed the environmental profile of the technology, placing increasing weight on impacts related to its operation and maintenance. Significantly higher impacts were observed on categories like climate change (311 kg CO2 eq/MWh when using 35 % NG), natural land transformation, terrestrial acidification and fossil depletion. Despite its fossil nature, the use of NG had a beneficial effect on other impact categories (human and marine toxicity, freshwater eutrophication and natural land transformation) due to the higher electricity output achieved. The overall environmental performance of CSP significantly deteriorated with the use of NG (single score 3.52 pt in solar only operation compared to 36.1 pt when using 35 % NG). Other sustainability parameters like EPT and CED also increased substantially as a result of higher NG inputs. Quasilinear second-degree polynomial relationships were calculated between various environmental performance parameters and NG contributions. Conclusions Energy input from auxiliary NG determines the environmental profile of the CSP plant. Aggregated analysis shows a deleterious effect on the overall environmental performance of the technology as a result of NG utilization. This is due primarily to higher impacts on environmental categories like climate change, natural land transformation, fossil fuel depletion and terrestrial acidification. NG may be used in a more sustainable and cost-effective manner in combined cycle power plants, which achieve higher energy conversion efficiencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Desarrollo y redacción de una guía basada en la mejor evidencia disponible sobre el diagnóstico y manejo de la ruptura aguda del ligamento cruzado anterior (LCA) para asistir a la toma de decisiones para controlar la variabilidad en los procesos clínicos de diagnóstico y manejo de dicha patología. Se definió el grupo de desarrollo de la guía (GDG) y de acuerdo con la metodología desarrollada en el Centro de Estudios del Hospital según convocatoria del Ministerio de Salud, se cumplieron las siguientes etapas : Priorización, definición de foco y alcance, formulación de las preguntas clínicas relevantes al estado del arte y puntos de controversia actual en el tema a tratar (Metodología PECOT), revisión sistemática de la literatura, síntesis de la evidencia, evaluación y graduación de acuerdo con la metodología "GRADE" y las platillas propuestas por SIGN. Por consenso se definieron las recomendaciones de acuerdo con la metodología GRADE. Se presenta una Guía de Práctica Clínica (GPC), que responde las preguntas: enfoque de hemartrosis, indicaciones quirúrgicas, terapia física preoperatoria, profilaxis antitrombótica, tipo de injerto, anestésicos intrarticulares, lesiones asociadas, posición del túnel femoral, reconstrucción de uno contra dos haces. De acuerdo con la evidencia encontrada se formulan doce recomendaciones ajustadas al nivel de evidencia. La presente GPC corresponde a un piloto de una metodología para desarrollo de GPC aprobabda para uso a nivel nacional y al primer producto sobre este tema en la literatura encontrada.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The construction industry is one of the greatest sources of pollution because of the high level of energy consumption during its life cycle. In addition to using energy while constructing a building, several systems also use power while the building is operating, especially the air-conditioning system. Energy consumption for this system is related, among other issues, to external air temperature and the required internal temperature of the building. The facades are elements which present the highest level of ambient heat transfer from the outside to the inside of tall buildings. Thus, the type of facade has an influence on energy consumption during the building life cycle and, consequently, contributes to buildings' CO2 emissions, because these emissions are directly connected to energy consumption. Therefore, the aim is to help develop a methodology for evaluating CO2 emissions generated during the life cycle of office building facades. The results, based on the parameters used in this study, show that facades using structural glazing and uncolored glass emit the most CO2 throughout their life cycle, followed by brick facades covered with compound aluminum panels or ACM (Aluminum Composite Material), facades using structural glazing and reflective glass and brick facades with plaster coating. On the other hand, the typology of facade that emits less CO2 is brickwork and mortar because its thermal barrier is better than structural glazing facade and materials used to produce this facade are better than brickwork and ACM. Finally, an uncertainty analysis was conducted to verify the accuracy of the results attained. (C) 2011 Elsevier Inc. All rights reserved.