958 resultados para LC ASSAY-METHOD
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of the current study was to develop and subsequently validate a simple, sensitive and precise reversed-phase LC method for the determination of ciprofloxacin hydrochloride in ophthalmic solution form. The chromatographic separation of ciprofloxacin hydrochloride was achieved on a Symmetry Waters C(18) column using UV detection at 275 nm. The optimized mobile phase consisted of 2.5% acetic acid solution: methanol:acetonitrile (70:15:15, v/v/v). The proposed method provided linear responses within the concentration range 1.0-6.0 mu g mL(-1) for ciprofloxacin hydrochloride. Correlation coefficient (r) for the ciprofloxacin hydrochloride was 0.9994. The precision of the method was demonstrated using intra- and inter-day assay RSD% values which were less than 5% in all instances. No interference from any components of pharmaceutical dosage forms was observed.
Resumo:
A simple and sensitive analytical method for simultaneous determination of anastrozole, bicalutamide, and tamoxifen as well as their synthetic impurities, anastrozole pentamethyl, bicalutamide 3-fluoro-isomer, and tamoxifen e-isomer, was developed and validated by using high performance liquid chromatography (HPLC). The separation was achieved on a Symmetry (R) C-8 column (100 x 4.6 mm i.d., 3.5 mu m) at room temperature (+/- 24 degrees C), with a mobile phase consisting of acetonitrile/water containing 0.18% N,N dimethyloctylamine and pH adjusted to 3.0 with orthophosphoric acid (46.5/53.5, v/v) at a flow rate of 1.0 mL min(-1) within 20 min. The detection was made at a wavelength of 270 nm by using ultraviolet (UV) detector. No interference peaks from excipients and relative retention time indicated the specificity of the method. The calibration curve showed correlation coefficients (r) > 0.99 calculated by linear regression and analysis of variance (ANOVA). The limit of detection (LOD) and limit of quantitation (LOQ), respectively, were 2.2 and 6.7 mu g mL(-1) for anastrozole, 2.61 and 8.72 mu g mL(-1) for bicalutamide, 2.0 and 6.7 mu g mL(-1) for tamoxifen, 0.06 and 0.22 mu g mL(-1) for anastrozole pentamethyl, 0.02 and 0.07 mu g mL(-1) for bicalutamide 3-fluoro-isomer, and 0.002 and 0.007 mu g mL(-1) for tamoxifen e-isomer. Intraday and interday relative standard deviations (RSDs) were <2.0% (drugs) and <10% (degradation products) as well as the comparison between two different analysts, which were calculated by f test. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
2016
Resumo:
Mirtazapine is an antidepressant that acts specifically on noradrenergic and sertonergic receptors. A LC-MS method was developed that allows the simultaneous analysis of the R-(-)- and S-(+)-enantiomers of mirtazapine (MIR), demethylmirtazapine (DMIR), and 8-hydroxymirtazapine (8-OH-MIR) in plasma of MIR-treated patients. The method involves a 3-step liquid-liquid extraction, an HPLC separation on a Chirobiotic V column, and MS detection in electrospray mode. The limit of quantification (LOQ) for all enantiomers was 0.5 ng/mL, and the intra- and interday CVs were within 3.3% to 11.7% (concentration ranges 5-50 ng/mL). A method is also presented for the quantitative analysis of glucuroconjugated MIR and 8-OH-MIR. S-(+)-8-OH-MIR is present in plasma mainly as its glucuronide. Preliminary data suggest that in all patients, except in those comedicated with CYP2D6 inhibitors such as fluoxetine and thioridazine, R-(-)-MIR concentrations were higher than those of S-(+)MIR. Moreover, fluvoxamine seems also to inhibit the metabolism of MIR. Therefore, this method seems to be suitable for the stereoselective assay of MIR and its metabolites in plasma of patients comedicated with MIR and other drugs for routine and research purposes.
Resumo:
A method is described for the analysis of deuterated and undeuterated alpha-tocopherol in blood components using liquid chromatography coupled to an orthogonal acceleration time-of-flight (TOF) mass spectrometer. Optimal ionisation conditions for undeuterated (d0) and tri- and hexadeuterated (d3 or d6) alpha-tocopherol standards were found with negative ion mode electrospray ionisation. Each species produced an isotopically resolved single ion of exact mass. Calibration curves of pure standards were linear in the range tested (0-1.5 muM, 0-15 pmol injected). For quantification of d0 and d6 in blood components following a standard solvent extraction, a stable-isotope-labelled internal standard (d3-alpha-tocopherol) was employed. To counter matrix ion suppression effects, standard response curves were generated following identical solvent extraction procedures to those of the samples. Within-day and between-day precision were determined for quantification of d0- and d6-labelled alpha-tocopherol in each blood component and both averaged 3-10%. Accuracy was assessed by comparison with a standard high-performance liquid chromatography (HPLC) method, achieving good correlation (r(2) = 0.94), and by spiking with known concentrations of alpha-tocopherol (98% accuracy). Limits of detection and quantification were determined to be 5 and 50 fmol injected, respectively. The assay was used to measure the appearance and disappearance of deuterium-labelled alpha-tocopherol in human blood components following deuterium-labelled (d6) RRR-alpha-tocopheryl acetate ingestion. The new LC/TOFMS method was found to be sensitive, required small sample volumes, was reproducible and robust, and was capable of high throughput when large numbers of samples were generated. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A new enzyme assay method for screening alpha-glucosidase inhibitors with rapidity and simplicity was developed. The enzyme-substituted alpha-glucosidases for this assay was glucoamylase. Samples were spotted or developed on the silica gel plate. The agar solution containing substrate was poured on the plate, and paper impregnated with enzyme was layered on the agar. After incubation, an inhibitory circle would appear around the inhibitor. By using this method, more than 200 strains of marine microorganisms were screened. Among them, three active strains were found to secrete inhibitors in the culture medium.
Resumo:
A surface plasmon resonance (SPR)-based inhibition assay method using a polyclonal anti-mouse IgM arrayed Cryptosporidium sensor chip was developed for the real-time detection of Cryptosporidium parvum oocysts. The Cryptosporidium sensor chip was fabricated by subsequent immobilization of streptavidin and polyclonal anti-mouse IgM (secondary antibody) onto heterogeneous self-assembled monolayers (SAMs). The assay consisted of the immunoreaction step between monoclonal anti-C. parvum oocyst (primary antibody) and oocysts, followed by the binding step of the unbound primary antibody onto the secondary antibody surface. It enhanced not only the immunoreaction yield of the oocysts by batch reaction but also the accessibility of analytes to the chip surface by antibody–antibody interaction. Furthermore, the use of optimum concentration of the primary antibody maximized its binding response on the chip. An inversely linear calibration curve for the oocyst concentration versus SPR signal was obtained in the range of 1×106–1×102 oocysts ml-1. The oocyst detection was also successfully achieved in natural water systems. These results indicate that the SPR-based inhibition assay using the Cryptosporidium sensor chip has high application potential for the real-time analysis of C. parvum oocyst in laboratory and field water monitoring.
Resumo:
A new polymeric coating consisting of a dual-phase, polydimethylsiloxane (PDMS) and polypyrrole (PPY) was developed for the stir bar sorptive extraction (SBSE) of antidepressants (mirtazapine, citalopram, paroxetine, duloxetine, fluoxetine and sertraline) from plasma samples, followed by liquid chromatography analysis (SBSE/LC-UV). The extractions were based on both adsorption (PPY) and sorption (PDMS) mechanisms. SBSE variables, such as extraction time, temperature, pH of the matrix, and desorption time were optimized, in order to achieve suitable analytical sensitivity in a short time period. The PDMS/PPY coated stir bar showed high extraction efficiency (sensitivity and selectivity) toward the target analytes. The quantification limits (LOQ) of the SBSE/LC-UV method ranged from 20 ng mL(-1) to 50 ng mL(-1), and the linear range was from LOQ to 500 ng mL(-1), with a determination coefficient higher than 0.99. The inter-day precision of the SBSE/LC-UV method presented a variation coefficient lower than 15%. The efficiency of the SBSE/LC-UV method was proved by analysis of plasma samples from elderly depressed patients. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
An alternative method using liquid chromatography with UV detection for the determination of prochloraz as 2,4,6-trichlorophenol in mango, papaya and orange is described. Ethyl acetate, acetone and dichloromethane were tested for extraction of prochloraz from the fruits. After extraction the residue of prochloraz was derivatized with pyridine hydrochloride. The analysis was carried out using liquid chromatography with UV detection and gas chromatography with electron-capture detection. Average recoveries of prochloraz from spiked fruits (0.1 and 0.2 mg kg-1) ranged from 80% to 94% with relative standard deviations between 5.6% and 12.6% (n=8). Detection and quantification limits were 0.05 and 0.1 mg kg-1, respectively. The LC-UV method was applied to mango and papaya samples submitted to dip treatment with a prochloraz formulation under laboratory conditions. In addition, fruit samples obtained from local markets were analysed. ©2005 Sociedade Brasileira de Química.