998 resultados para Kinetic behavior


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biochemical and Biophysical Research Communications 308 (2003) 73–78

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sequential batch reactor with suspended biomass and useful volume of 5 L was used in the removal of nutrients and organic matter in workbench scale under optimal conditions obtained by central composite rotational design (CCRD), with cycle time (CT) of 16 h (10.15 h, aerobic phase, and 4.35 h, anoxic phase) and carbon: nitrogen ratio (COD/NO2--N+NO3--N) equal to 6. Complete cycles (20), nitrification followed by denitrification, were evaluated to investigate the kinetic behavior of degradation of organic (COD) and nitrogenated (NH4+-N, NO2--N and NO3--N) matter present in the effluent from a bird slaughterhouse and industrial processing facility, as well as to evaluate the stability of the reactor using Shewhart control charts of individual measures. The results indicate means total inorganic nitrogen (NH4+-N+NO2- -N+NO3--N) removal of 84.32±1.59% and organic matter (COD) of 53.65±8.48% in the complete process (nitrification-denitrification) with the process under statistical control. The nitrifying activity during the aerobic phase estimated from the determination of the kinetic parameters had mean K1 and K2 values of 0.00381±0.00043 min-1 and 0.00381±0.00043 min-1, respectively. The evaluation of the kinetic behavior of the conversion of nitrogen indicated a possible reduction of CT in the anoxic phase, since removals of NO2--N and NO3--N higher than 90% were obtained with only 1 h of denitrification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The equilibrium and kinetics of methemoglobin conversion to hemichrome induced by dehydration were investigated by visible absorption spectroscopy. Below about 0.20 g water per g hemoglobin only hemichrome was present in the sample; above this value, an increasing proportion of methemoglobin appeared with the increase in hydration. The transition between the two derivatives showed a time-dependent biphasic behavior and was observed to be reversible. The rates obtained for the transition of methemoglobin to hemichrome were 0.31 and 1.93 min-1 and for hemichrome to methemoglobin 0.05 and 0.47 min-1. We suggest that hemichrome is a reversible conformational state of hemoglobin and that the two rates observed for the transition between the two derivatives reflect the α- and β-chains of hemoglobin.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Novel formulations of cationic nanoemulsions based on three different lipids were developed to strengthen the attraction of the polyanionic oligonucleotide (ODN) macromolecules to the cationic moieties on the oil nanodroplets. These formulations were developed to prolong the release of the ODN from the nanoemulsion under appropriate physiological dilutions as encountered in the eye following topical application. Increasing the concentration of the new cationic lipid exhibiting two cationic amine groups (AOA) in the emulsion from 0.05% to 0.4% did not alter markedly the particle size or zeta potential value of the blank cationic nanoemulsion. The extent of ODN association did not vary significantly when the initial concentration of ODN remained constant at 10 microM irrespective of the cationic lipid nature. However, the zeta potential value dropped consistently with the low concentrations of 0.05% and 0.1% of AOA in the emulsions suggesting that an electrostatic attraction occurred between the cationic lipids and the polyanionic ODN molecules at the o/w interface. Only the nanoemulsion prepared with N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium salts (DOTAP) remained physically stable over time. DOTAP cationic lipid nanoemulsion was the most efficient formulation capable of retaining the ODN despite the high dilution of 1:100 with simulated tear solution (STS). Less than 10% of the ODN was exchanged in contrast to 40-50% with the other cationic nanoemulsions. The in-vitro release kinetic behavior of ODN exchange with physiological anions present in the STS appears to be complex and difficult to characterize using mathematical fitting model equations. Further pharmacokinetic studies are needed to verify our kinetic assumptions and confirm the in-vitro ODN release profile from DOTAP cationic nanoemulsions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Substrate inhibition by ATP is a regulatory feature of the phosphofructokinases isoenzymes from Escherichia coli (Pfk-1 and Pfk-2). Under gluconeogenic conditions, the loss of this regulation in Pfk-2 causes substrate cycling of fructose-6-phosphate (fructose-6-P) and futile consumption of ATP delaying growth. In the present work, we have broached the mechanism of ATP-induced inhibition of Pfk-2 from both structural and kinetic perspectives. The crystal structure of Pfk-2 in complex with fructose-6-P is reported to a resolution of 2 angstrom. The comparison of this structure with the previously reported inhibited form of the enzyme suggests a negative interplay between fructose-6-P binding and allosteric binding of MgATP. Initial velocity experiments show a linear increase of the apparent K(0.5) for fructose-6-P and a decrease in the apparent k(cat) as a function of MgATP concentration. These effects occur simultaneously with the induction of a sigmoidal kinetic behavior (n(H) of approximately 2). Differences and resemblances in the patterns of fructose-6-P binding and the mechanism of inhibition are discussed for Pfk-1 and Pfk-2, as an example of evolutionary convergence, because these enzymes do not share a common ancestor.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Al and In-diclofenac compounds were prepared. Thermogravimetry (TG) and X-ray diffraction powder patterns were used to characterize these compounds. Details concerning the dehydration and thermal decomposition as well as data of kinetic parameters have been described here. The kinetic studies of these stages were evaluated from several heating rates with mass sample of 2 and 5 mg in open crucibles under nitrogen atmosphere. The results of the present study improve the knowledge on these compounds including their dehydration and thermal stability. The obtained data leads to a dependence on the sample mass, which results in two kinetic behavior patterns.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have analyzed 16 missense mutations of the tissue-nonspecific AP (TNAP) gene found in patients with hypophosphatasia. These mutations span the phenotypic spectrum of the disease, from the lethal perinatal/infantile forms to the less severe adult and odontohypophosphatasia. Site-directed mutagenesis was used to introduce a sequence tag into the TNAP cDNA and eliminate the glycosylphosphatidylinositol (GPI)-anchor recognition sequence to produce a secreted epitope-tagged TNAP (setTNAP). The properties of GPI-anchored TNAP (gpiTNAP) and setTNAP were found comparable. After introducing each single hypophosphatasia mutation, the setTNAP and mutant TNAP cDNAs were expressed in COS-1 cells and the recombinant flagged enzymes were affinity purified. We characterized the kinetic behavior, inhibition, and heat stability properties of each mutant using the artificial substrate p-nitrophenylphosphate (pNPP) at pH 9.8. We also determined the ability of the mutants to metabolize two natural substrates of TNAP, that is, pyridoxal-5'-phosphate (PLP) and inorganic pyrophosphate (PPi), at physiological pH. Six of the mutant enzymes were completely devoid of catalytic activity (R54C, R54P, A94T, R206W, G317D, and V365I), and 10 others (A16V, A115V, A160T, A162T, E174K, E174G, D277A, E281K, D361V, and G439R) showed various levels of residual activity. The A160T substitution was found to decrease the catalytic efficiency of the mutant enzyme toward pNPP to retain normal activity toward PPi and to display increased activity toward PLP. The A162T substitution caused a considerable reduction in the pNPPase, PPiase, and PLPase activities of the mutant enzyme. The D277A mutant was found to maintain high catalytic efficiency toward pNPP as substrate but not against PLP or PPi. Three mutations ( E174G, E174K, and E281K) were found to retain normal or slightly subnormal catalytic efficiency toward pNPP and PPi but not against PLP. Because abnormalities in PLP metabolism have been shown to cause epileptic seizures in mice null for the TNAP gene, these kinetic data help explain the variable expressivity of epileptic seizures in hypophosphatasia patients.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Laccases (benzendiol:oxygen oxidoreductases; EC 1.10.3.2) catalyze the oxidation of a broad range of substrates, such as polyphenols, dyes and pollutants, and thus these enzymes are widely applied in industrial, biotechnological and environmental fields. In order to improve their biotechnological applications, a deep knowledge of structural factors involved in controlling their activity, in various experimental conditions and on different substrates, is required. In the present study, a laccase from the mushroom Rigidoporus lignosus was kinetically characterized. In particular, the stability, the effects of pH, ionic strength and fluoride ion concentration on the kinetic parameters were investigated, using three di-hydroxy-benzene isomers (1,2-dihydroxy-benzene, 1,3-dihydroxy-benzene and 1,4-dihydroxy-benzene) as substrates. The catalytic constant values of the laccase showed a bell-shaped pH profile, with the same optimum pH and pK(a) values for all tested substrates. This behavior appears to be due to the presence of an ionizable residue in the enzyme active site. To identify this residue, the enzyme was derivatized with diethylpyrocarbonate to modify accessible histidine residues, which, according to structural data, are present in the active site of this enzyme. The kinetic behavior of the derivatized laccase was compared with that of the native enzyme and the derivatized residues were identified by mass spectrometry. Mass spectrometry and kinetic results suggest the main role of His-457 in the control of the catalytic activity of laccase from R. lignosus. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sequenz spezifische biomolekulare Analyseverfahren erweisen sich gerade im Hinblick auf das Humane Genom Projekt als äußerst nützlich in der Detektion von einzelnen Nukleotid Polymorphismen (SNPs) und zur Identifizierung von Genen. Auf Grund der hohen Anzahl von Basenpaaren, die zu analysieren sind, werden sensitive und effiziente Rastermethoden benötigt, welche dazu fähig sind, DNA-Proben in einer geeigneten Art und Weise zu bearbeiten. Die meisten Detektionsarten berücksichtigen die Interaktion einer verankerten Probe und des korrespondierenden Targets mit den Oberflächen. Die Analyse des kinetischen Verhaltens der Oligonukleotide auf der Sensoroberfläche ist infolgedessen von höchster Wichtigkeit für die Verbesserung bereits bekannter Detektions - Schemata. In letzter Zeit wurde die Oberflächen Plasmonen feld-verstärkte Fluoreszenz Spektroskopie (SPFS) entwickelt. Sie stellt eine kinetische Analyse - und Detektions - Methode dar, die mit doppelter Aufzeichnung, d.h. der Änderung der Reflektivität und des Fluoreszenzsignals, für das Interphasen Phänomen operiert. Durch die Verwendung von SPFS können Kinetikmessungen für die Hybridisierung zwischen Peptid Nukleinsäure (PNA), welche eine synthetisierte Nukleinsäure DNA imitiert und eine stabilere Doppelhelix formt, und DNA auf der Sensoroberfläche ausgeführt werden. Mittels einzel-, umfassend-, und titrations- Experimenten sowohl mit einer komplementär zusammenpassenden Sequenz als auch einer mismatch Sequenz können basierend auf dem Langmuir Modell die Geschwindigkeitskonstanten für die Bindungsreaktion des oligomer DNA Targets bzw. des PCR Targets zur PNA ermittelt werden. Darüber hinaus wurden die Einflüsse der Ionenstärke und der Temperatur für die PNA/DNA Hybridisierung in einer kinetischen Analyse aufgezeigt.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Brush border myosin-I (BBM-I) is a single-headed unconventional myosin found in the microvilli of intestinal epithelial cells. We used stopped-flow kinetic analysis to measure the rate and equilibrium constants for several steps in the BBM-I ATPase cycle. We determined the rates for ATP binding to BBM-I and brush border actomyosin-I (actoBBM-I), the rate of actoBBM-I dissociation by ATP, and the rates for the steps in ADP dissociation from actoBBM-I. The rate and equilibrium constants for several of the steps in the actoBBM-I ATPase are significantly different from those of other members of the myosin superfamily. Most notably, dissociation of the actoBBM-I complex by ATP and release of ADP from actoBBM-I are both very slow. The slow rates of these steps may play a role in lengthening the time spent in force-generating states and in limiting the maximal rate of BBM-I motility. In addition, release of ADP from the actoBBM-I complex occurs in at least two steps. This study provides evidence for a member of the myosin superfamily with markedly divergent kinetic behavior.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The gold surface of a quartz crystal microbalance was modified by the attachment of silica particles derivatised with N-[(3-trimethoxysilyl)propyl] ethylenediaminetriacetic acid. The device was employed to study the kinetics of the interaction of aqueous solutions of lead(II) nitrate and silver(I) nitrate with the surface and for the selective separation of the metal ions.