950 resultados para Kidney vascular resistance
Resumo:
In previous studies using bilateral carotid occlusion in conscious freely moving rats we suggested that aortic baroreceptors may play a more important role in the regulation of hindlimb than in renal and mesenteric vascular resistances. In the present study we performed electrical stimulation of the aortic baroreceptor nerve and analyzed the changes in mean arterial pressure and in hindlimb, renal, and mesenteric vascular resistances. All the experiments were performed under urethan anesthesia. Unilateral electrical stimulation (3 V, 2 ms, 50 Hz) of the aortic baroreceptor nerve produced a fall in arterial pressure (-27 +/- 3 mmHg) and an important reduction in hindlimb vascular resistance (-43 +/- 5%), with an increase in renal (+3 +/- 14%) and mesenteric (+48 +/- 12%) vascular resistances. Similar changes in arterial pressure as well as in the resistance of the three vascular beds studied were also observed during electrical stimulation of the aortic baroreceptor nerve in rats with bilateral carotid baroreceptor denervation or in rats treated with methylatropine. The data obtained with electrical stimulation indicated that aortic baroreceptors play a more important role in the regulation of blood flow in hindlimb than in renal and mesenteric vascular beds.
Resumo:
In the present study, we investigated changes in mesenteric, renal, and hindquarter vascular resistance during the pressor response produced by bilateral carotid occlusion (BCO) in conscious, freely moving normal and denervated (aortic, carotid, or both) rats. BCO was performed using special previously implanted cuffs. In control normal rats, the increase in mean arterial pressure (MAP) during early and late responses (37 +/- 4 and 21 +/- 2 mm Hg, respectively) was related to increased renal (125 +/- 12% and 45 +/- 10%) and mesenteric (38 +/- 13% and 41 +/- 5%) but not hindquarter (14 +/- 4% and 8 +/- 7%) vascular resistance. In aortic-denervated rats, the greater MAP increase in early and late responses (57 +/- 4 and 44 +/- 4 mm Hg, respectively) compared with normal rats was related to a marked increase in hindquarter (137 +/- 26% and 106 +/- 26%) and mesenteric (104 +/- 14% and 66 +/- 9%) vascular resistance. In carotid-denervated rats, MAP increase and change in vascular resistance were similar to those values observed in control rats. Sinoaortic-denervated rats showed a greater MAP increase (34 +/- 4 mm Hg) during late response and a reduced increase in renal vascular resistance (46 +/- 6%) during early response. The present results show that 1) the pressor response to BCO in normal rats is associated with an increase in renal and mesenteric vascular resistance, 2) the aortic baroreceptors buffer the increase in mesenteric and especially hindquarter vascular resistance during BCO, and 3) the reduced pressor response in late response is probably related to a reduced increase in renal vascular resistance during this component compared with the early response.
Resumo:
Bites from snake (Bothrops genus) cause local tissue damage and systemic complications, which include alterations such as hemostatic system and acute renal failure (ARF). Recent studies suggest that ARF pathogenesis in snakebite envenomation is multifactorial and involves hemodynamic disturbances, immunologic reactions and direct nephrotoxicity. The aim of the work was to investigate the effects of the Bothrops leucurus venom (BlV) in the renal perfusion system and in cultured renal tubular cells of the type MDCK (Madin-Darby Canine kidney). BlV (10 μg/mL) reduced the perfusion pressure at 90 and 120 min. The renal vascular resistance (RVR) decreased at 120 min of perfusion. The effect on urinary flow (UF) and glomerular filtration rate (GFR) started 30 min after BlV infusion, was transient and returned to normal at 120 min of perfusion. It was also observed a decrease on percentual tubular transport of sodium (%TNa+) at 120 min and of chloride (%TCl-) at 60 and 90 min. The treatment with BlV caused decrease in cell viability to the lowest concentration tested with an IC50 of 1.25 μg/mL. Flow cytometry with annexin V and propidium iodide showed that cell death occurred predominantly by necrosis. However, a cell death process may involve apoptosis in lower concentrations. BlV treatment (1.25 μg/mL) led to significant depolarization of the mitochondrial membrane potential and, indeed, we found an increase in the expression of cell death genes in the lower concentrations tested. The venom also evoked an increase in the cytosolic Ca2+ in a concentration dependent manner, indicating that Ca2+ may participate in the venom of B. leucurus effect. The characterization of the effects in the isolated kidney and renal tubular cells gives strong evidences that the acute renal failure induced by this venom is a result of the direct nephrotoxicity which may involve the cell death mechanism. © 2012.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objectives The study sought to evaluate the ability of cardiac magnetic resonance (CMR) to monitor acute and long-term changes in pulmonary vascular resistance (PVR) noninvasively. Background PVR monitoring during the follow-up of patients with pulmonary hypertension (PH) and the response to vasodilator testing require invasive right heart catheterization. Methods An experimental study in pigs was designed to evaluate the ability of CMR to monitor: 1) an acute increase in PVR generated by acute pulmonary embolization (n = 10); 2) serial changes in PVR in chronic PH (n = 22); and 3) changes in PVR during vasodilator testing in chronic PH (n = 10). CMR studies were performed with simultaneous hemodynamic assessment using a CMR-compatible Swan-Ganz catheter. Average flow velocity in the main pulmonary artery (PA) was quantified with phase contrast imaging. Pearson correlation and mixed model analysis were used to correlate changes in PVR with changes in CMR-quantified PA velocity. Additionally, PVR was estimated from CMR data (PA velocity and right ventricular ejection fraction) using a formula previously validated. Results Changes in PA velocity strongly and inversely correlated with acute increases in PVR induced by pulmonary embolization (r = –0.92), serial PVR fluctuations in chronic PH (r = –0.89), and acute reductions during vasodilator testing (r = –0.89, p ≤ 0.01 for all). CMR-estimated PVR showed adequate agreement with invasive PVR (mean bias –1.1 Wood units,; 95% confidence interval: –5.9 to 3.7) and changes in both indices correlated strongly (r = 0.86, p < 0.01). Conclusions CMR allows for noninvasive monitoring of acute and chronic changes in PVR in PH. This capability may be valuable in the evaluation and follow-up of patients with PH.
Resumo:
Almost 20 years ago, Adriaan Versprille published an editorial in this journal to explain why, in his opinion, the calculation of pulmonary vascular resistance (PVR) is meaningless [1]. The uncertainties of PVR were underscored a year later by McGregor and Sniderman in the American Journal of Cardiology [2]. Obviously, both papers failed to convince. A Medline search from 1985 to the end of 2002 reveals no less than 7,158 papers with PVR calculations. What is it that could be wrong in all this literature?.
Resumo:
Background and objectives - The use of magnesium sulphate for the prevention of seizures in pre-eclampsia may induce hypermagnesemia. Clinical and experimental studies are not in agreement about the effects of magnesium on the renal hemodynamics and function. We therefore studied the effects of hypermagnesemia on the renal hemodynamics and function of dogs anesthetized with pentobarbitone. Methods - Sixteen mongrel dogs were anesthetized with pentobarbitone 30 mg.kg-1 and submitted to extracellular ) and mechanical ventilation with room air. The dogs were volume expansion with Ringer's solution (0.4 ml.kg.min allocated into two groups of 8 animals, for the study of renal hemodynamics and function following the administration of 5 mg.kg-1 of pentobarbitone (Group 1 - control or of pentobarbitone associated with magnesium sulphate in the dose (Group 2). The parameters studied were: PAH of 140 mg.kg, administered in 15 minutes, followed by 80 mg.kg-1.h-1 clearance, creatinine clearance, osmolar clearance, free water clearance, renal blood flow, renal vascular resistance, filtration fraction, urinary volume, plasmatic and urinary osmolarity, urinary and fractionary excretion of sodium and potassium, measured at five moments: 15 (M1), 30 (M2), 60 (M3) and 75 (M4) minutes after the first supplementary dose of pentobarbitone and 15 minutes (M5) after the second supplementary dose in Group 1. In Group 2, the moments M3, M4, M5 were 15, 30 and 60 minutes after the priming dose of magnesium sulphate and during the maintenance dose. Results - In Group I no significant changes were observed in renal hemodynamic parameters and creatinine clearance. The extracellular volume expansion increased urinary volume and decreased urinary osmolarity as a consequence of sodium, potassium and free water clearance. The fractionary excretion of sodium was maintained. The plasmatic osmolarity increased. In Group 2, renal hemodynamic parameters and creatinine clearance were also maintained. There was an increase in renal sodium clearance, as detected by the increase in the fractionary excretion of sodium. Conclusions - Magnesium sulphate did not produce significant changes in renal hemodynamics and facilitated the renal excretion of sodium in dogs anesthetized with pentobarbitone.
Resumo:
Acute renal failure is the most common complication in the lethal cases caused by snakebites in Brazil. Among the Brazilian venom snakes, Bothrops erythromelas is responsible for the majority of accidents in Northeastern Brazil. Didelphis marsupialis serum could inhibit myonecrotic, hemorrhagic, edematogenic hyperalgesic and lethal effects of envenomation determined by ophidian bites. In the present study, we evaluated the action of the anti-bothropic factor isolated from D. marsupialis on the renal effects promoted by B. erythromelas venom without systemic interference. Isolated kidneys from Wistar rats were perfused with Krebs-Henseleit solution containing 6% bovine serum albumin. We analyzed renal perfusion pressure (PP), renal vascular resistance (RVR), glomerular filtration rate (GFR), urinary flow (UF), and the percentages of sodium and potassium tubular transport (%TNa +, %TK +). The B. erythromelas venom (10 μg mL -1) decreased the PP (ct=108.71±5.09 mmHg; BE=65.21±5.6 mmHg*) and RVR (ct=5.76±0.65 mmHg mL -1 g -1 min -1; BE=3.10±0.45 mmHg mL -1 g -1 min -1*) . On the other hand, the GFR decreased at 60 min (ct 60=0.76±0. 07 mL g -1 min -1; BE 60=0.42±0.12 mL g -1 min -1*) and increased at 120 min (ct 120=0.72±0.01 mL g -1 min -1; BE 120=1.24±0.26 mL g -1 min -1*). The UF increased significantly when compared with the control group (ct=0.14±0.01 mL g -1 min -1; BE=0.47±0.08 mL g -1 min -1*). The venom reduced the %TNa + (ct 90=79.18±0.88%; BE 90=58.35±4.86%*) and %TK + (ct 90=67.20±4.04%; BE 90=57. 32±5.26%*) The anti-bothropic factor from D. marsupialis (10 μg mL -1) incubated with B. erythromelas venom (10 μg mL -1) blocked the effects on PP, RVR, %TNa +, and %TK +, but was not able to reverse the effects in UF and GFR promoted by venom alone. However, the highest concentration of D. marsupialis serum (30 μg mL -1) reversed all the renal effects induced by the venom. In conclusion, B. erythromelas venom altered all the renal functional parameters evaluated and the anti-bothropic factor from D. marsupialis was able to inhibit the effects induced by the venom in isolated kidney. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
Background and Aims: We have optimized the isolated perfused mouse kidney (IPMK) model for studying renal vascular and tubular function in vitro using 24-28 g C57BL6J mice; the wild type controls for many transgenic mice. Methods and Results: Buffer composition was optimized for bovine serum albumin concentration (BSA). The effect of adding erythrocytes on renal function and morphology was assessed. Autoregulation was investigated during stepped increases in perfusion pressure. Perfusion for 60 min at 90-110 mmHg with Krebs bicarbonate buffer containing 5.5% BSA, and amino acids produced functional parameters within the in vivo range. Erythrocytes increased renal vascular resistance (3.8 +/- 0.2 vs 2.4 +/- 0.1 mL/min.mmHg, P < 0.05), enhanced sodium reabsorption (FENa = 0.3 +/- 0.08 vs 1.5 +/- 0.7%, P < 0.05), produced equivalent glomerular filtration rates (GFR; 364 +/- 38 vs 400 +/- 9 muL/min per gkw) and reduced distal tubular cell injury in the inner stripe (5.8 +/- 1.7 vs 23.7 +/- 3.1%, P < 0.001) compared to cell free perfusion. The IPMK was responsive to vasoconstrictor (angiotensin II, EC50 100 pM) and vasodilator (methacholine, EC50 75 nM) mediators and showed partial autoregulation of perfusate flow under control conditions over 65-85 mmHg; autoregulatory index (ARI) of 0.66 +/- 0.11. Angiotensin II (100 pM) extended this range (to 65-120 mmHg) and enhanced efficiency (ARI 0.21 +/- 0.02, P < 0.05). Angiotensin II facilitation was antagonized by methacholine (ARI 0.76 +/- 0.08) and papaverine (ARI 0.91 +/- 0.13). Conclusion: The IPMK model is useful for studying renal physiology and pathophysiology without systemic neurohormonal influences.