6 resultados para Kaniadakis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we study a connection between a non-Gaussian statistics, the Kaniadakis statistics, and Complex Networks. We show that the degree distribution P(k)of a scale free-network, can be calculated using a maximization of information entropy in the context of non-gaussian statistics. As an example, a numerical analysis based on the preferential attachment growth model is discussed, as well as a numerical behavior of the Kaniadakis and Tsallis degree distribution is compared. We also analyze the diffusive epidemic process (DEP) on a regular lattice one-dimensional. The model is composed of A (healthy) and B (sick) species that independently diffusive on lattice with diffusion rates DA and DB for which the probabilistic dynamical rule A + B → 2B and B → A. This model belongs to the category of non-equilibrium systems with an absorbing state and a phase transition between active an inactive states. We investigate the critical behavior of the DEP using an auto-adaptive algorithm to find critical points: the method of automatic searching for critical points (MASCP). We compare our results with the literature and we find that the MASCP successfully finds the critical exponents 1/ѵ and 1/zѵ in all the cases DA =DB, DA DB. The simulations show that the DEP has the same critical exponents as are expected from field-theoretical arguments. Moreover, we find that, contrary to a renormalization group prediction, the system does not show a discontinuous phase transition in the regime o DA >DB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A posição que a renomada estatí stica de Boltzmann-Gibbs (BG) ocupa no cenário cientifíco e incontestável, tendo um âmbito de aplicabilidade muito abrangente. Por em, muitos fenômenos físicos não podem ser descritos por esse formalismo. Isso se deve, em parte, ao fato de que a estatística de BG trata de fenômenos que se encontram no equilíbrio termodinâmico. Em regiões onde o equilíbrio térmico não prevalece, outros formalismos estatísticos devem ser utilizados. Dois desses formalismos emergiram nas duas ultimas décadas e são comumente denominados de q-estatística e k-estatística; o primeiro deles foi concebido por Constantino Tsallis no final da década de 80 e o ultimo por Giorgio Kaniadakis em 2001. Esses formalismos possuem caráter generalizador e, por isso, contem a estatística de BG como caso particular para uma escolha adequada de certos parâmetros. Esses dois formalismos, em particular o de Tsallis, nos conduzem também a refletir criticamente sobre conceitos tão fortemente enraizados na estat ística de BG como a aditividade e a extensividade de certas grandezas físicas. O escopo deste trabalho esta centrado no segundo desses formalismos. A k -estatstica constitui não só uma generalização da estatística de BG, mas, atraves da fundamentação do Princípio de Interação Cinético (KIP), engloba em seu âmago as celebradas estatísticas quânticas de Fermi- Dirac e Bose-Einstein; além da própria q-estatística. Neste trabalho, apresentamos alguns aspectos conceituais da q-estatística e, principalmente, da k-estatística. Utilizaremos esses conceitos junto com o conceito de informação de bloco para apresentar um funcional entrópico espelhado no formalismo de Kaniadakis que será utilizado posteriormente para descrever aspectos informacionais contidos em fractais tipo Cantor. Em particular, estamos interessados em conhecer as relações entre parâmetros fractais, como a dimensão fractal, e o parâmetro deformador. Apesar da simplicidade, isso nos proporcionará, em trabalho futuros, descrever estatisticamente estruturas mais complexas como o DNA, super-redes e sistema complexos

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this Letter, we determine the kappa-distribution function for a gas in the presence of an external field of force described by a potential U(r). In the case of a dilute gas, we show that the kappa-power law distribution including the potential energy factor term can rigorously be deduced in the framework of kinetic theory with basis on the Vlasov equation. Such a result is significant as a preliminary to the discussion on the role of long range interactions in the Kaniadakis thermostatistics and the underlying kinetic theory. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this Thesis, we analyzed the formation of maxwellian tails of the distributions of the rotational velocity in the context of the out of equilibrium Boltzmann Gibbs statistical mechanics. We start from a unified model for the angular momentum loss rate which made possible the construction of a general theory for the rotational decay in the which, finally, through the compilation between standard Maxwellian and the relation of rotational decay, we defined the (_, _) Maxwellian distributions. The results reveal that the out of equilibrium Boltzmann Gibbs statistics supplies us results as good as the one of the Tsallis and Kaniadakis generalized statistics, besides allowing fittings controlled by physical properties extracted of the own theory of stellar rotation. In addition, our results point out that these generalized statistics converge to the one of Boltzmann Gibbs when we inserted, in your respective functions of distributions, a rotational velocity defined as a distribution

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Considering a non-relativistic ideal gas, the standard foundations of kinetic theory are investigated in the context of non-gaussian statistical mechanics introduced by Kaniadakis. The new formalism is based on the generalization of the Boltzmann H-theorem and the deduction of Maxwells statistical distribution. The calculated power law distribution is parameterized through a parameter measuring the degree of non-gaussianity. In the limit = 0, the theory of gaussian Maxwell-Boltzmann distribution is recovered. Two physical applications of the non-gaussian effects have been considered. The first one, the -Doppler broadening of spectral lines from an excited gas is obtained from analytical expressions. The second one, a mathematical relationship between the entropic index and the stellar polytropic index is shown by using the thermodynamic formulation for self-gravitational systems

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Considering a quantum gas, the foundations of standard thermostatistics are investigated in the context of non-Gaussian statistical mechanics introduced by Tsallis and Kaniadakis. The new formalism is based on the following generalizations: i) Maxwell- Boltzmann-Gibbs entropy and ii) deduction of H-theorem. Based on this investigation, we calculate a new entropy using a generalization of combinatorial analysis based on two different methods of counting. The basic ingredients used in the H-theorem were: a generalized quantum entropy and a generalization of collisional term of Boltzmann equation. The power law distributions are parameterized by parameters q;, measuring the degree of non-Gaussianity of quantum gas. In the limit q