953 resultados para Kalman lter
Resumo:
Dense deployments of wireless local area networks (WLANs) are becoming a norm in many cities around the world. However, increased interference and trafc demands can severely limit the aggregate throughput achievable unless an effective channel assignment scheme is used. In this work, a simple and effective distributed channel assignment (DCA) scheme is proposed. It is shown that in order to maximise throughput, each access point (AP) simply chooses the channel with the minimum number of active neighbour nodes (i.e. nodes associated with neighbouring APs that have packets to send). However, application of such a scheme to practice depends critically on its ability to estimate the number of neighbour nodes in each channel, for which no practical estimator has been proposed before. In view of this, an extended Kalman lter (EKF) estimator and an estimate of the number of nodes by AP are proposed. These not only provide fast and accurate estimates but can also exploit channel switching information of neighbouring APs. Extensive packet level simulation results show that the proposed minimum neighbour and EKF estimator (MINEK) scheme is highly scalable and can provide signicant throughput improvement over other channel assignment schemes.
Resumo:
Este trabalho visa contribuir para o desenvolvimento de um sistema de viso multi-cmara para determinao da localizao, atitude e seguimento de mltiplos objectos, para ser utilizado na unidade de robtica do INESCTEC, e resulta da necessidade de ter informao externa exacta que sirva de referncia no estudo, caracterizao e desenvolvimento de algoritmos de localizao, navegao e controlo de vrios sistemas autnomos. Com base na caracterizao dos veculos autnomos existentes na unidade de robtica do INESCTEC e na anlise dos seus cenrios de operao, foi efectuado o levantamento de requisitos para o sistema a desenvolver. Foram estudados os fundamentos tericos, necessrios ao desenvolvimento do sistema, em temas relacionados com viso computacional, mtodos de estimao e associao de dados para problemas de seguimento de mltiplos objectos . Foi proposta uma arquitectura para o sistema global que enderea os vrios requisitos identi cados, permitindo a utilizao de mltiplas cmaras e suportando o seguimento de mltiplos objectos, com ou sem marcadores. Foram implementados e validados componentes da arquitectura proposta e integrados num sistema para validao, focando na localizao e seguimento de mltiplos objectos com marcadores luminosos base de Light-Emitting Diodes (LEDs). Nomeadamente, os mdulos para a identi cao dos pontos de interesse na imagem, tcnicas para agrupar os vrios pontos de interesse de cada objecto e efectuar a correspondncia das medidas obtidas pelas vrias cmaras, mtodo para a determinao da posio e atitude dos objectos, ltro para seguimento de mltiplos objectos. Foram realizados testes para validao e a nao do sistema implementado que demonstram que a soluo encontrada vai de encontro aos requisitos, e foram identi cadas as linhas de trabalho para a continuao do desenvolvimento do sistema global.
Resumo:
Large scale image mosaicing methods are in great demand among scientists who study dierent aspects of the seabed, and have been fostered by impressive advances in the capabilities of underwater robots in gathering optical data from the seaoor. Cost and weight constraints mean that lowcost Remotely operated vehicles (ROVs) usually have a very limited number of sensors. When a low-cost robot carries out a seafloor survey using a down-looking camera, it usually follows a predetermined trajectory that provides several non time-consecutive overlapping image pairs. Finding these pairs (a process known as topology estimation) is indispensable to obtaining globally consistent mosaics and accurate trajectory estimates, which are necessary for a global view of the surveyed area, especially when optical sensors are the only data source. This thesis presents a set of consistent methods aimed at creating large area image mosaics from optical data obtained during surveys with low-cost underwater vehicles. First, a global alignment method developed within a Feature-based image mosaicing (FIM) framework, where nonlinear minimisation is substituted by two linear steps, is discussed. Then, a simple four-point mosaic rectifying method is proposed to reduce distortions that might occur due to lens distortions, error accumulation and the diculties of optical imaging in an underwater medium. The topology estimation problem is addressed by means of an augmented state and extended Kalman lter combined framework, aimed at minimising the total number of matching attempts and simultaneously obtaining the best possible trajectory. Potential image pairs are predicted by taking into account the uncertainty in the trajectory. The contribution of matching an image pair is investigated using information theory principles. Lastly, a dierent solution to the topology estimation problem is proposed in a bundle adjustment framework. Innovative aspects include the use of fast image similarity criterion combined with a Minimum spanning tree (MST) solution, to obtain a tentative topology. This topology is improved by attempting image matching with the pairs for which there is the most overlap evidence. Unlike previous approaches for large-area mosaicing, our framework is able to deal naturally with cases where time-consecutive images cannot be matched successfully, such as completely unordered sets. Finally, the eciency of the proposed methods is discussed and a comparison made with other state-of-the-art approaches, using a series of challenging datasets in underwater scenarios
Resumo:
Almost all research elds in geosciences use numerical models and observations and combine these using data-assimilation techniques. With ever-increasing resolution and complexity, the numerical models tend to be highly nonlinear and also observations become more complicated and their relation to the models more nonlinear. Standard data-assimilation techniques like (ensemble) Kalman lters and variational methods like 4D-Var rely on linearizations and are likely to fail in one way or another. Nonlinear data-assimilation techniques are available, but are only efcient for small-dimensional problems, hampered by the so-called curse of dimensionality. Here we present a fully nonlinear particle lter that can be applied to higher dimensional problems by exploiting the freedom of the proposal density inherent in particle ltering. The method is illustrated for the three-dimensional Lorenz model using three particles and the much more complex 40-dimensional Lorenz model using 20 particles. By also applying the method to the 1000-dimensional Lorenz model, again using only 20 particles, we demonstrate the strong scale-invariance of the method, leading to the optimistic conjecture that the method is applicable to realistic geophysical problems. Copyright c 2010 Royal Meteorological Society
Resumo:
This paper studies semistability of the recursive Kalman filter in the context of linear time-varying (LTV), possibly nondetectable systems with incorrect noise information. Semistability is a key property, as it ensures that the actual estimation error does not diverge exponentially. We explore structural properties of the filter to obtain a necessary and sufficient condition for the filter to be semistable. The condition does not involve limiting gains nor the solution of Riccati equations, as they can be difficult to obtain numerically and may not exist. We also compare semistability with the notions of stability and stability w.r.t. the initial error covariance, and we show that semistability in a sense makes no distinction between persistent and nonpersistent incorrect noise models, as opposed to stability. In the linear time invariant scenario we obtain algebraic, easy to test conditions for semistability and stability, which complement results available in the context of detectable systems. Illustrative examples are included.
Resumo:
The goal of this paper is to study and propose a new technique for noise reduction used during the reconstruction of speech signals, particularly for biomedical applications. The proposed method is based on Kalman filtering in the time domain combined with spectral subtraction. Comparison with discrete Kalman filter in the frequency domain shows better performance of the proposed technique. The performance is evaluated by using the segmental signal-to-noise ratio and the Itakura-Saito`s distance. Results have shown that Kalman`s filter in time combined with spectral subtraction is more robust and efficient, improving the Itakura-Saito`s distance by up to four times. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The recent developments on Hidden Markov Models (HMM) based speech synthesis showed that this is a promising technology fully capable of competing with other established techniques. However some issues still lack a solution. Several authors report an over-smoothing phenomenon on both time and frequencies which decreases naturalness and sometimes intelligibility. In this work we present a new vowel intelligibility enhancement algorithm that uses a discrete Kalman filter (DKF) for tracking frame based parameters. The inter-frame correlations are modelled by an autoregressive structure which provides an underlying time frame dependency and can improve time-frequency resolution. The systems performance has been evaluated using objective and subjective tests and the proposed methodology has led to improved results.
Resumo:
The continued increase in availability of economic data in recent years and, more importantly, the possibility to construct larger frequency time series, have fostered the use (and development) of statistical and econometric techniques to treat them more accurately. This paper presents an exposition of structural time series models by which a time series can be decomposed as the sum of a trend, seasonal and irregular components. In addition to a detailled analysis of univariate speci fications we also address the SUTSE multivariate case and the issue of cointegration. Finally, the recursive estimation and smoothing by means of the Kalman filter algorithm is described taking into account its different stages, from initialisation to parameter s estimation.
Resumo:
This note describes how the Kalman filter can be modified to allow for thevector of observables to be a function of lagged variables without increasing the dimensionof the state vector in the filter. This is useful in applications where it is desirable to keepthe dimension of the state vector low. The modified filter and accompanying code (whichnests the standard filter) can be used to compute (i) the steady state Kalman filter (ii) thelog likelihood of a parameterized state space model conditional on a history of observables(iii) a smoothed estimate of latent state variables and (iv) a draw from the distribution oflatent states conditional on a history of observables.
Resumo:
El dficit existente a nuestro pas con respecto a la disponibilidad de indicadores cuantitativos con los que llevar a trmino un anlisis coyuntural de la actividad industrial regional ha abierto un debate centrado en el estudio de cul es la metodologa ms adecuada para elaborar indicadores de estas caractersticas. Dentro de este marco, en este trabajo se presentan las principales conclusiones obtenidas en anteriores estudios (Clar, et. al., 1997a, 1997b y 1998) sobre la idoneidad de extender las metodologas que actualmente se estn aplicando a las regiones espaolas para elaborar indicadores de la actividad industrial mediante mtodos indirectos. Estas conclusiones llevan a plantear una estrategia distinta a las que actualmente se vienen aplicando. En concreto, se propone (siguiendo a Israilevich y Kuttner, 1993) un modelo de variables latentes para estimar el indicador de la produccin industrial regional. Este tipo de modelo puede especificarse en trminos de un modelo statespace y estimarse mediante el filtro de Kalman. Para validar la metodologa propuesta se estiman unos indicadores de acuerdo con ella para tres de las cuatro regiones espaolas que disponen dun ndice de Produccin Industrial (IPI) elaborado mediante el mtodo directo (Andaluca, Asturias y el Pas Vasco) y se comparan con los IPIs publicados (oficiales). Los resultados obtenidos muestran el buen comportamiento de lestrategia propuesta, abriendo as una lnea de trabajo con la que subsanar el dficit al que se haca referencia anteriormente
Resumo:
El dficit existente a nuestro pas con respecto a la disponibilidad de indicadores cuantitativos con los que llevar a trmino un anlisis coyuntural de la actividad industrial regional ha abierto un debate centrado en el estudio de cul es la metodologa ms adecuada para elaborar indicadores de estas caractersticas. Dentro de este marco, en este trabajo se presentan las principales conclusiones obtenidas en anteriores estudios (Clar, et. al., 1997a, 1997b y 1998) sobre la idoneidad de extender las metodologas que actualmente se estn aplicando a las regiones espaolas para elaborar indicadores de la actividad industrial mediante mtodos indirectos. Estas conclusiones llevan a plantear una estrategia distinta a las que actualmente se vienen aplicando. En concreto, se propone (siguiendo a Israilevich y Kuttner, 1993) un modelo de variables latentes para estimar el indicador de la produccin industrial regional. Este tipo de modelo puede especificarse en trminos de un modelo statespace y estimarse mediante el filtro de Kalman. Para validar la metodologa propuesta se estiman unos indicadores de acuerdo con ella para tres de las cuatro regiones espaolas que disponen dun ndice de Produccin Industrial (IPI) elaborado mediante el mtodo directo (Andaluca, Asturias y el Pas Vasco) y se comparan con los IPIs publicados (oficiales). Los resultados obtenidos muestran el buen comportamiento de lestrategia propuesta, abriendo as una lnea de trabajo con la que subsanar el dficit al que se haca referencia anteriormente
Resumo:
Addresses the problem of estimating the motion of an autonomous underwater vehicle (AUV), while it constructs a visual map ("mosaic" image) of the ocean floor. The vehicle is equipped with a down-looking camera which is used to compute its motion with respect to the seafloor. As the mosaic increases in size, a systematic bias is introduced in the alignment of the images which form the mosaic. Therefore, this accumulative error produces a drift in the estimation of the position of the vehicle. When the arbitrary trajectory of the AUV crosses over itself, it is possible to reduce this propagation of image alignment errors within the mosaic. A Kalman filter with augmented state is proposed to optimally estimate both the visual map and the vehicle position
Resumo:
Els sistemes hbrids de navegaci integren mesures de posici i velocitat provinents de satllits (GPS) i dunitats de mesura inercials (IMU).Les dades daquests sensors shan de fusionar i suavitzar, i per a aquest propsit existeixen diversos algorismes de filtratge, que tracten les dades conjuntament o per separat. En aquest treball shan codificat en Matlab els algorismes dels filtres de Kalman i IMM, i shan comparat les seves prestacions en diverses trajectries dun vehicle. Shan avaluat quantitativament els errors dels dos filtres, i shan sintonitzat els seus parmetres per a minimitzar aquests errors. Amb una correcta sintonia dels filtres, sha comprovat que el filtre IMM s superior al filtre de Kalman, tant per maniobres brusques com per maniobres suaus, malgrat que la complexitat i el temps de clcul requerit sn majors.