955 resultados para Junction grouping
Resumo:
In this paper, we propose two Bayesian methods for detecting and grouping junctions. Our junction detection method evolves from the Kona approach, and it is based on a competitive greedy procedure inspired in the region competition method. Then, junction grouping is accomplished by finding connecting paths between pairs of junctions. Path searching is performed by applying a Bayesian A* algorithm that has been recently proposed. Both methods are efficient and robust, and they are tested with synthetic and real images.
Resumo:
Maximisation of Knowledge-Based Development (KBD) benefits requires effective dissemination and utilisation mechanisms to accompany the initial knowledge creation process. This work highlights the potential for interactions between Supply Chains (SCs) and Small and Medium sized Enterprise Clusters (SMECs), (including via ‘junction’ firms which are members of both networks), to facilitate such effective dissemination and utilisation of knowledge. In both these network types there are firms that readily utilise their relationships and ties for ongoing business success through innovation. The following chapter highlights the potential for such beneficial interactions between SCs and SMECs in key elements of KBD, particularly knowledge management, innovation and technology transfer. Because there has been little focus on the interactions between SCs and SMECs, particularly when firms simultaneously belong to both, this chapter examines the conduits through which information and knowledge can be transferred and utilised. It shows that each network type has its own distinct advantages in the types of information searched for and transferred amongst network member firms. Comparing and contrasting these advantages shows opportunities for both networks to leverage the knowledge sharing strengths of each other, through these ‘junctions’ to address their own weaknesses, allowing implications to be drawn concerning new ways of utilising relationships for mutual network gains.
Resumo:
This paper presents a novel approach to road-traffic control for interconnected junctions. With a local fuzzy-logic controller (FLC) installed at each junction, a dynamic-programming (DP) technique is proposed to derive the green time for each phase in a traffic-light cycle. Coordination parameters from the adjacent junctions are also taken into consideration so that organized control is extended beyond a single junction. Instead of pursuing the absolute optimization of traffic delay, this study examines a practical approach to enable the simple implementation of coordination among junctions, while attempting to reduce delays, if possible. The simulation results show that the delay per vehicle can be substantially reduced, particularly when the traffic demand reaches the junction capacity. The implementation of this controller does not require complicated or demanding hardware, and such simplicity makes it a useful tool for offline studies or realtime control purposes.
Resumo:
Traffic conflicts at railway junctions are very conmon, particularly on congested rail lines. While safe passage through the junction is well maintained by the signalling and interlocking systems, minimising the delays imposed on the trains by assigning the right-of-way sequence sensibly is a bonus to the quality of service. A deterministic method has been adopted to resolve the conflict, with the objective of minimising the total weighted delay. However, the computational demand remains significant. The applications of different heuristic methods to tackle this problem are reviewed and explored, elaborating their feasibility in various aspects and comparing their relative merits for further studies. As most heuristic methods do not guarantee a global optimum, this study focuses on the trade-off between computation time and optimality of the resolution.
Resumo:
Fuzzy logic has been applied to control traffic at road junctions. A simple controller with one fixed rule-set is inadequate to minimise delays when traffic flow rate is time-varying and likely to span a wide range. To achieve better control, fuzzy rules adapted to the current traffic conditions are used.
Resumo:
In general, simple and traditional methods are applied to resolve traffic conflicts at railway junctions. They are, however, either inefficient or computationally demanding. A simple genetic algorithm is presented to enable a search for a near optimal resolution to be carried out while meeting the constraints on generation evolution and minimising the search time.
Resumo:
Traffic control at road junctions is one of the major concerns in most metropolitan cities. Controllers of various approaches are available and the required control action is the effective green-time assigned to each traffic stream within a traffic-light cycle. The application of fuzzy logic provides the controller with the capability to handle uncertain natures of the system, such as drivers’ behaviour and random arrivals of vehicles. When turning traffic is allowed at the junction, the number of phases in the traffic-light cycle increases. The additional input variables inevitably complicate the controller and hence slow down the decision-making process, which is critical in this real-time control problem. In this paper, a hierarchical fuzzy logic controller is proposed to tackle this traffic control problem at a 2-way road junction with turning traffic. The two levels of fuzzy logic controllers devise the minimum effective green-time and fine-tune it respectively at each phase of a traffic-light cycle. The complexity of the controller at each level is reduced with smaller rule-set. The performance of this hierarchical controller is examined by comparison with a fixed-time controller under various traffic conditions. Substantial delay reduction has been achieved as a result and the performance and limitation of the controller will be discussed.
Resumo:
This study investigates the application of local search methods on the railway junction traffic conflict-resolution problem, with the objective of attaining a quick and reasonable solution. A procedure based on local search relies on finding a better solution than the current one by a search in the neighbourhood of the current one. The structure of neighbourhood is therefore very important to an efficient local search procedure. In this paper, the formulation of the structure of the solution, which is the right-of-way sequence assignment, is first described. Two new neighbourhood definitions are then proposed and the performance of the corresponding local search procedures is evaluated by simulation. It has been shown that they provide similar results but they can be used to handle different traffic conditions and system requirements.
Resumo:
Traffic control at a road junction by a complex fuzzy logic controller is investigated. The increase in the complexity of junction means more number of input variables must be taken into account, which will increase the number of fuzzy rules in the system. A hierarchical fuzzy logic controller is introduced to reduce the number of rules. Besides, the increase in the complexity of the controller makes formulation of the fuzzy rules difficult. A genetic algorithm based off-line leaning algorithm is employed to generate the fuzzy rules. The learning algorithm uses constant flow-rates as training sets. The system is tested by both constant and time-varying flow-rates. Simulation results show that the proposed controller produces lower average delay than a fixed-time controller does under various traffic conditions.
Resumo:
Two archaeal Holliday junction resolving enzymes, Holliday junction cleavage (Hjc) and Holliday junction endonuclease (Hje), have been characterized. Both are members of a nuclease superfamily that includes the type II restriction enzymes, although their DNA cleaving activity is highly specific for four-way junction structure and not nucleic acid sequence. Despite 28% sequence identity, Hje and Hjc cleave junctions with distinct cutting patterns—they cut different strands of a four-way junction, at different distances from the junction centre. We report the high-resolution crystal structure of Hje from Sulfolobus solfataricus. The structure provides a basis to explain the differences in substrate specificity of Hje and Hjc, which result from changes in dimer organization, and suggests a viral origin for the Hje gene. Structural and biochemical data support the modelling of an Hje:DNA junction complex, highlighting a flexible loop that interacts intimately with the junction centre. A highly conserved serine residue on this loop is shown to be essential for the enzyme's activity, suggesting a novel variation of the nuclease active site. The loop may act as a conformational switch, ensuring that the active site is completed only on binding a four-way junction, thus explaining the exquisite specificity of these enzymes.
Resumo:
Distributed pipeline assets systems are crucial to society. The deterioration of these assets and the optimal allocation of limited budget for their maintenance correspond to crucial challenges for water utility managers. Decision makers should be assisted with optimal solutions to select the best maintenance plan concerning available resources and management strategies. Much research effort has been dedicated to the development of optimal strategies for maintenance of water pipes. Most of the maintenance strategies are intended for scheduling individual water pipe. Consideration of optimal group scheduling replacement jobs for groups of pipes or other linear assets has so far not received much attention in literature. It is a common practice that replacement planners select two or three pipes manually with ambiguous criteria to group into one replacement job. This is obviously not the best solution for job grouping and may not be cost effective, especially when total cost can be up to multiple million dollars. In this paper, an optimal group scheduling scheme with three decision criteria for distributed pipeline assets maintenance decision is proposed. A Maintenance Grouping Optimization (MGO) model with multiple criteria is developed. An immediate challenge of such modeling is to deal with scalability of vast combinatorial solution space. To address this issue, a modified genetic algorithm is developed together with a Judgment Matrix. This Judgment Matrix is corresponding to various combinations of pipe replacement schedules. An industrial case study based on a section of a real water distribution network was conducted to test the new model. The results of the case study show that new schedule generated a significant cost reduction compared with the schedule without grouping pipes.
Resumo:
Recently, Software as a Service (SaaS) in Cloud computing, has become more and more significant among software users and providers. To offer a SaaS with flexible functions at a low cost, SaaS providers have focused on the decomposition of the SaaS functionalities, or known as composite SaaS. This approach has introduced new challenges in SaaS resource management in data centres. One of the challenges is managing the resources allocated to the composite SaaS. Due to the dynamic environment of a Cloud data centre, resources that have been initially allocated to SaaS components may be overloaded or wasted. As such, reconfiguration for the components’ placement is triggered to maintain the performance of the composite SaaS. However, existing approaches often ignore the communication or dependencies between SaaS components in their implementation. In a composite SaaS, it is important to include these elements, as they will directly affect the performance of the SaaS. This paper will propose a Grouping Genetic Algorithm (GGA) for multiple composite SaaS application component clustering in Cloud computing that will address this gap. To the best of our knowledge, this is the first attempt to handle multiple composite SaaS reconfiguration placement in a dynamic Cloud environment. The experimental results demonstrate the feasibility and the scalability of the GGA.