968 resultados para Jacobian matrices


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Design of locally optimal fault tolerant manipulators has been recently addressed via using the constraints of the desired null space for the Jacobian matrix of the manipulators. In the present paper the Jacobian matrices for optimal fault tolerance are presented based on geometric properties of column vectors instead of the null space. They are equally fault tolerant to a single joint failure from the worst-case relative manipulability and worst-case dexterity points of view. The optimality is achieved through a symmetric distribution of points on spheres.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The design of locally optimal fault-tolerant manipulators has been previously addressed via adding constraints on the bases of a desired null space to the design constraints of the manipulators. Then by algebraic or numeric solution of the design equations, the optimal Jacobian matrix is obtained. In this study, an optimal fault-tolerant Jacobian matrix generator is introduced from geometric properties instead of the null space properties. The proposed generator provides equally fault-tolerant Jacobian matrices in R3 that are optimally fault tolerant for one or two locked joint failures. It is shown that the proposed optimal Jacobian matrices are directly obtained via regular pyramids. The geometric approach and zonotopes are used as a novel tool for determining relative manipulability in the context of fault-tolerant robotics and for bringing geometric insight into the design of optimal fault-tolerant manipulators.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three different methods of inclusion of current measurements by phasor measurement units (PMUs) in a power sysetm state estimator is investigated. A comprehensive formulation of the hybrid state estimator incorporating conventional, as well as PMU measurements, is presented for each of the three methods. The behaviour of the elements because of the current measurements in the measurement Jacobian matrix is examined for any possible ill-conditioning of the state estimator gain matrix. The performance of the state estimators are compared in terms of the convergence properties and the varian in the estimated states. The IEEE 14-bus and IEEE 300-bus systems are used as test beds for the study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract—In this paper we investigate the capacity of a general class of the slotted amplify and forward (SAF) relaying protocol where multiple, though a finite number of relays may transmit in a given cooperative slot and the relay terminals being half-duplex have a finite slot memory capacity. We derive an expression for the capacity per channel use of this generalized SAF channel assuming all source to relay, relay to destination and source to destination channel gains are independent and modeled as complex Gaussian. We show through the analysis of eigenvalue distributions that the increase in limiting capacity per channel use is marginal with the increase of relay terminals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We develop a fast Poisson preconditioner for the efficient numerical solution of a class of two-sided nonlinear space fractional diffusion equations in one and two dimensions using the method of lines. Using the shifted Gr¨unwald finite difference formulas to approximate the two-sided(i.e. the left and right Riemann-Liouville) fractional derivatives, the resulting semi-discrete nonlinear systems have dense Jacobian matrices owing to the non-local property of fractional derivatives. We employ a modern initial value problem solver utilising backward differentiation formulas and Jacobian-free Newton-Krylov methods to solve these systems. For efficient performance of the Jacobianfree Newton-Krylov method it is essential to apply an effective preconditioner to accelerate the convergence of the linear iterative solver. The key contribution of our work is to generalise the fast Poisson preconditioner, widely used for integer-order diffusion equations, so that it applies to the two-sided space fractional diffusion equation. A number of numerical experiments are presented to demonstrate the effectiveness of the preconditioner and the overall solution strategy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Distributed generation (DG) resources are commonly used in the electric systems to obtain minimum line losses, as one of the benefits of DG, in radial distribution systems. Studies have shown the importance of appropriate selection of location and size of DGs. This paper proposes an analytical method for solving optimal distributed generation placement (ODGP) problem to minimize line losses in radial distribution systems using loss sensitivity factor (LSF) based on bus-injection to branch-current (BIBC) matrix. The proposed method is formulated and tested on 12 and 34 bus radial distribution systems. The classical grid search algorithm based on successive load flows is employed to validate the results. The main advantages of the proposed method as compared with the other conventional methods are the robustness and no need to calculate and invert large admittance or Jacobian matrices. Therefore, the simulation time and the amount of computer memory, required for processing data especially for the large systems, decreases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present an approach for the inspection of vertical pole-like infrastructure using a vertical take-off and landing (VTOL) unmanned aerial vehicle and shared autonomy. Inspecting vertical structures, such as light and power distribution poles, is a time consuming, dangerous and expensive task with high operator workload. To address these issues, we propose a VTOL platform that can operate at close-quarters, whilst maintaining a safe stand-off distance and rejecting environmental disturbances. We adopt an Image based Visual Servoing (IBVS) technique using only two line features to stabilise the vehicle with respect to a pole. Visual, inertial and sonar data are used, making the approach suitable for indoor or GPS-denied environments. Results from simulation and outdoor flight experiments demonstrate the system is able to successfully inspect and circumnavigate a pole.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Floquet analysis is widely used for small-order systems (say, order M < 100) to find trim results of control inputs and periodic responses, and stability results of damping levels and frequencies, Presently, however, it is practical neither for design applications nor for comprehensive analysis models that lead to large systems (M > 100); the run time on a sequential computer is simply prohibitive, Accordingly, a massively parallel Floquet analysis is developed with emphasis on large systems, and it is implemented on two SIMD or single-instruction, multiple-data computers with 4096 and 8192 processors, The focus of this development is a parallel shooting method with damped Newton iteration to generate trim results; the Floquet transition matrix (FTM) comes out as a byproduct, The eigenvalues and eigenvectors of the FTM are computed by a parallel QR method, and thereby stability results are generated, For illustration, flap and flap-lag stability of isolated rotors are treated by the parallel analysis and by a corresponding sequential analysis with the conventional shooting and QR methods; linear quasisteady airfoil aerodynamics and a finite-state three-dimensional wake model are used, Computational reliability is quantified by the condition numbers of the Jacobian matrices in Newton iteration, the condition numbers of the eigenvalues and the residual errors of the eigenpairs, and reliability figures are comparable in both the parallel and sequential analyses, Compared to the sequential analysis, the parallel analysis reduces the run time of large systems dramatically, and the reduction increases with increasing system order; this finding offers considerable promise for design and comprehensive-analysis applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quasi-Newton methods are applied to solve interface problems which arise from domain decomposition methods. These interface problems are usually sparse systems of linear or nonlinear equations. We are interested in applying these methods to systems of linear equations where we are not able or willing to calculate the Jacobian matrices as well as to systems of nonlinear equations resulting from nonlinear elliptic problems in the context of domain decomposition. Suitability for parallel implementation of these algorithms on coarse-grained parallel computers is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to carry out high-precision machining of aerospace structural components with large size, thin wall and complex surface, this paper proposes a novel parallel kinematic machine (PKM) and formulates its semi-analytical theoretical stiffness model considering gravitational effects that is verified by stiffness experiments. From the viewpoint of topology structure, the novel PKM consists of two substructures in terms of the redundant and overconstrained parallel mechanisms that are connected by two interlinked revolute joints. The theoretical stiffness model of the novel PKM is established based upon the virtual work principle and deformation superposition principle after mapping the stiffness models of substructures from joint space to operated space by Jacobian matrices and considering the deformation contributions of interlinked revolute joints to two substructures. Meanwhile, the component gravities are treated as external payloads exerting on the end reference point of the novel PKM resorting to static equivalence principle. This approach is proved by comparing the theoretical stiffness values with experimental stiffness values in the same configurations, which also indicates equivalent gravity can be employed to describe the actual distributed gravities in an acceptable accuracy manner. Finally, on the basis of the verified theoretical stiffness model, the stiffness distributions of the novel PKM are illustrated and the contributions of component gravities to the stiffness of the novel PKM are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A family of planar parallel manipulators is investigated and some novel members are proposed. The common feature of the studied manipulators is that the rotation axes of the actuated arms coincide. This feature makes it possible to rotate the whole arm system an infinite number of revolutions around the center of the manipulator. The result is a large workspace in relation to the footprint. Both 2- and 3-DOF variants are presented and the suitability of this family of manipulators for kinematic analysis is demonstrated. Thus, different methods to find optimal manipulability with respect to platform positioning and rotation have been analyzed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Continuation methods have been long used in P-V curve tracing due to their efficiency in the resolution of ill-conditioned cases, with close to singular Jacobian matrices, such as the maximum loading point of power systems. Several parameterization techniques have been proposed to avoid matrix singularity and successfully solve those cases. This paper presents a simple geometric parameterization technique to overcome the singularity of the Jacobian matrix by the addition of a line equations located at the plane determined by a bus voltage magnitude and the loading factor. This technique enlarges the set of voltage variables that can be used to whole P-V curve tracing, without ill-conditioning problems and no need of parameter changes. Simulation results, obtained for large realistic Brazilian and American power systems, show that the robustness and efficiency of the conventional power flow are not only preserved but also improved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Continuation methods have been shown as efficient tools for solving ill-conditioned cases, with close to singular Jacobian matrices, such as the maximum loading point of power systems. Some parameterization techniques have been proposed to avoid matrix singularity and successfully solve those cases. This paper presents a new geometric parameterization scheme that allows the complete tracing of the P-V curves without ill-conditioning problems. The proposed technique associates robustness to simplicity and, it is of easy understanding. The Jacobian matrix singularity is avoided by the addition of a line equation, which passes through a point in the plane determined by the total real power losses and loading factor. These two parameters have clear physical meaning. The application of this new technique to the IEEE systems (14, 30, 57, 118 and 300 buses) shows that the best characteristics of the conventional Newton's method are not only preserved but also improved. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents efficient geometric parameterization techniques using the tangent and the trivial predictors for the continuation power flow, developed from observation of the trajectories of the load flow solution. The parameterization technique eliminates the Jacobian matrix singularity of load flow, and therefore all the consequent problems of ill-conditioning, by the addition of the line equations which pass through the points in the plane determined by the variables loading factor and the real power generated by the slack bus, two parameters with clear physical meaning. This paper also provides an automatic step size control around the maximum loading point. Thus, the resulting method enables not only the calculation of the maximum loading point, but also the complete tracing of P-V curves of electric power systems. The technique combines robustness with ease of understanding. The results to the IEEE 300-bus system and of large real systems show the effectiveness of the proposed method. © 2012 IEEE.