963 resultados para Isotope labelling
Resumo:
The presence of NO during the regeneration period of a Pt-Ba/Al O Lean NO Trap (LNT) catalyst modifies significantly the evolution of products formed from the reduction of stored nitrates, particularly nitrogen and ammonia. The use of isotope labelling techniques, feeding NO during the storage period and NO during regeneration allows us to propose three different routes for nitrogen formation based on the different masses detected during regeneration, i.e. N (m/e = 28), N N (m/e = 29) and N (m/e = 30). It is proposed that the formation of nitrogen via Route 1 involves the reaction between hydrogen and NO released from the storage component to form NH mainly. Then, ammonia further reacts with NO located downstream to form N . In Route 2, it is postulated that the incoming NO reacts with hydrogen to form NH in the reactor zone where the trap has been already regenerated. This isotopically labelled ammonia travels through the catalyst bed until it reaches the regeneration front where it participates in the reduction of stored nitrates ( NO ) to form N N. The formation of N via Route 3 is believed to occur by the reaction between incoming NO and H . The modification of the hydrogen concentration fed during regeneration affects the relative importance of H or NH as reductants and thus the production of N via Route 1 and N N via Route 2.
Resumo:
Hydroponic isotope labelling of entire plants (HILEP) is a cost-effective method enabling metabolic labelling of whole and mature plants with a stable isotope such as N-15. By utilising hydroponic media that contain N-15 inorganic salts as the sole nitrogen source, near to 100% N-15-labelling of proteins can be achieved. In this study, it is shown that HILEP, in combination with mass spectrometry, is suitable for relative protein quantitation of seven week-old Arabidopsis plants submitted to oxidative stress. Protein extracts from pooled N-14- and N-15-hydroponically grown plants were fractionated by SDS-PAGE, digested and analysed by liquid chromatography electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS). Proteins were identified and the spectra of N-14/N-15 peptide pairs were extracted using their m/z chromatographic retention time, isotopic distributions, and the m/z difference between the N-14 and N-15 peptides. Relative amounts were calculated as the ratio of the sum of the peak areas of the two distinct N-14 and N-15 peptide isotope envelopes. Using Mascot and the open source trans-proteomic pipeline (TPP), the data processing was automated for global proteome quantitation down to the isoform level by extracting isoform specific peptides. With this combination of metabolic labelling and mass spectrometry it was possible to show differential protein expression in the apoplast of plants submitted to oxidative stress. Moreover, it was possible to discriminate between differentially expressed isoforms belonging to the same protein family, such as isoforms of xylanases and pathogen-related glucanases (PR 2). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The potential impact of rising carbon dioxide (CO2) on carbon transfer from phytoplankton to bacteria was investigated during the 2005 PeECE III mesocosm study in Bergen, Norway. Sets of mesocosms, in which a phytoplankton bloom was induced by nutrient addition, were incubated under 1x (~350 µatm), 2x (~700 µatm), and 3x present day CO2 (~1050 µatm) initial seawater and sustained atmospheric CO2 levels for 3 weeks. 13C labelled bicarbonate was added to all mesocosms to follow the transfer of carbon from dissolved inorganic carbon (DIC) into phytoplankton and subsequently heterotrophic bacteria, and settling particles. Isotope ratios of polar-lipid-derived fatty acids (PLFA) were used to infer the biomass and production of phytoplankton and bacteria. Phytoplankton PLFA were enriched within one day after label addition, whilst it took another 3 days before bacteria showed substantial enrichment. Group-specific primary production measurements revealed that coccolithophores showed higher primary production than green algae and diatoms. Elevated CO2 had a significant positive effect on post-bloom biomass of green algae, diatoms, and bacteria. A simple model based on measured isotope ratios of phytoplankton and bacteria revealed that CO2 had no significant effect on the carbon transfer efficiency from phytoplankton to bacteria during the bloom. There was no indication of CO2 effects on enhanced settling based on isotope mixing models during the phytoplankton bloom, but this could not be determined in the post-bloom phase. Our results suggest that CO2effects are most pronounced in the post-bloom phase, under nutrient limitation.
Resumo:
Linking organisms or groups of organisms to specific functions within natural environments is a fundamental challenge in microbial ecology. Advances in technology for manipulating and analyzing nucleic acids have made it possible to characterize the members of microbial communities without the intervention of laboratory culturing. Results from such studies have shown that the vast majority of soil organisms have never been cultured, highlighting the risks of culture-based approaches in community analysis. The development of culture-independent techniques for following the flow of substrates through microbial communities therefore represents an important advance. These techniques, collectively known as stable isotope probing (SIP), involve introducing a stable isotope-labeled substrate into a microbial community and following the fate of the substrate by extracting diagnostic molecular species such as fatty acids and nucleic acids from the community and determining which specific molecules have incorporated the isotope. The molecules in which the isotope label appears provide identifying information about the organism that incorporated the substrate. Stable isotope probing allows direct observations of substrate assimilation in minimally disturbed communities, and thus represents an exciting new tool for linking microbial identity and function. The use of lipids or nucleic acids as the diagnostic molecule brings different strengths and weaknesses to the experimental approach, and necessitates the use of significantly different instrumentation and analytical techniques. This short review provides an overview of the lipid and nucleic acid approaches, discusses their strengths and weaknesses, gives examples of applications in various settings, and looks at prospects for the future of SIP technology.
Resumo:
Over 1 million km2 of seafloor experience permanent low-oxygen conditions within oxygen minimum zones (OMZs). OMZs are predicted to grow as a consequence of climate change, potentially affecting oceanic biogeochemical cycles. The Arabian Sea OMZ impinges upon the western Indian continental margin at bathyal depths (150 - 1500 m) producing a strong depth dependent oxygen gradient at the sea floor. The influence of the OMZ upon the short term processing of organic matter by sediment ecosystems was investigated using in situ stable isotope pulse chase experiments. These deployed doses of 13C:15N labeled organic matter onto the sediment surface at four stations from across the OMZ (water depth 540 - 1100 m; [O2] = 0.35 - 15 μM). In order to prevent experimentally anoxia, the mesocosms were not sealed. 13C and 15N labels were traced into sediment, bacteria, fauna and 13C into sediment porewater DIC and DOC. However, the DIC and DOC flux to the water column could not be measured, limiting our capacity to obtain mass-balance for C in each experimental mesocosm. Linear Inverse Modeling (LIM) provides a method to obtain a mass-balanced model of carbon flow that integrates stable-isotope tracer data with community biomass and biogeochemical flux data from a range of sources. Here we present an adaptation of the LIM methodology used to investigate how ecosystem structure influenced carbon flow across the Indian margin OMZ. We demonstrate how oxygen conditions affect food-web complexity, affecting the linkages between the bacteria, foraminifera and metazoan fauna, and their contributions to benthic respiration. The food-web models demonstrate how changes in ecosystem complexity are associated with oxygen availability across the OMZ and allow us to obtain a complete carbon budget for the stationa where stable-isotope labelling experiments were conducted.
Resumo:
Quantitative analysis by mass spectrometry (MS) is a major challenge in proteomics as the correlation between analyte concentration and signal intensity is often poor due to varying ionisation efficiencies in the presence of molecular competitors. However, relative quantitation methods that utilise differential stable isotope labelling and mass spectrometric detection are available. Many drawbacks inherent to chemical labelling methods (ICAT, iTRAQ) can be overcome by metabolic labelling with amino acids containing stable isotopes (e.g. 13C and/or 15N) in methods such as Stable Isotope Labelling with Amino acids in Cell culture (SILAC). SILAC has also been used for labelling of proteins in plant cell cultures (1) but is not suitable for whole plant labelling. Plants are usually autotrophic (fixing carbon from atmospheric CO2) and, thus, labelling with carbon isotopes becomes impractical. In addition, SILAC is expensive. Recently, Arabidopsis cell cultures were labelled with 15N in a medium containing nitrate as sole nitrogen source. This was shown to be suitable for quantifying proteins and nitrogen-containing metabolites from this cell culture (2,3). Labelling whole plants, however, offers the advantage of studying quantitatively the response to stimulation or disease of a whole multicellular organism or multi-organism systems at the molecular level. Furthermore, plant metabolism enables the use of inexpensive labelling media without introducing additional stress to the organism. And finally, hydroponics is ideal to undertake metabolic labelling under extremely well-controlled conditions. We demonstrate the suitability of metabolic 15N hydroponic isotope labelling of entire plants (HILEP) for relative quantitative proteomic analysis by mass spectrometry. To evaluate this methodology, Arabidopsis plants were grown hydroponically in 14N and 15N media and subjected to oxidative stress.
Resumo:
A novel combination of site-specific isotope labelling, polarised infrared spectroscopy and molecular combing reveal local orientational ordering in the fibril-forming peptide YTIAALLSPYSGGRADS. Use of 13C-18O labelled alanine residues demonstrates that the Nterminal end of the peptide is incorporated into the cross-beta structure, while the C-terminal end shows orientational disorder
Resumo:
a- and b-zearalenol (a-ZOL and b-ZOL, respectively) are metabolites of the mycotoxin zearalenone (ZEN). All three individual mycotoxins have shown to be biological active i.e. being estrogenic and able to stimulate cellular proliferation albeit at different strengths. In this work, cytosol protein expression was determined by using stable-isotope labelling by amino acids in cell culture (SILAC) upon exposure of a-ZOL and b-ZOL to the steroidogenesis cell model H295R. A total of 14 and 5 individual proteins were found to be significantly regulated by a-ZOL and b-ZOL, respectively. Interestingly, there were no common protein regulations by the metabolites or the parent mycotoxin ZEN. Furthermore, the regulated proteins were assigned to networks and groups of actions that also differed from one another suggesting that the three individual mycotoxins may have unique biological activities.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Änderungen in der Architektur von Polymeren abweichend von einer linearen Kette, beeinflussen deren physikalisch-chemisches Verhalten. Eine mögliche Architektur der verzweigten Moleküle stellen sternförmige Polymere dar. An einem zentralen Molekül als Kern, beispielsweise einem Dendrimer, sind an dessen Endpunkte lineare Polymerketten kovalent gebunden. In dieser Arbeit wurden zwei Problemstellungen behandelt. Zunächst wurde das Verhalten von Sternpolymeren aus Polybutadien in einer Matrix aus linearem Polybutadien mittels Neutronenkleinwinkelstreuung untersucht. Die Molekulargewichte der linaren Ketten wurden so gewählt, daî eines ein kleineres und das zweite ein größeres Molekulargewicht hat, als der leichteste bzw. schwerste Arm der verwendeten Sternpolymere. Neben den Parametern Armanzahl und -gewicht wurde die Konzentrations- und Temperaturabhängig durchgeführt. Die aus diesen Messungen extrahierten Parameter wurden mit den theoretischen Vorhersagen bezüglich des Skalenverhaltens vonSternpolymeren in derartigen Mischungen verglichen. Weiterhin wurde ein Interaktionsparameter bestimmt und in einzelne Anteile verschiedener Arten der Wechselwirkungen zerlegt. Die zweite Fragestellung betraf das Adsorptionsverhalten von Sternpolymeren im Vergleich mit linearen Polymeren. Es wurde die Kinetik der Adsorption mittels Ellipsometrie, die Strukturbildung mit dem Rasterkraftmikroskop und Streuung unter streifendem Einfalluntersucht.
Resumo:
The topic of this thesis is the investigation of structure,order and dynamics in discotic mesogens by advancedsolid-state NMR spectroscopy. Most of the discotic mesogensunder investigation are hexa-peri-hexabenzocoronene (HBC)derivatives which are of particular interest for potentialdevice applications due to their high one-dimensional chargecarrier mobilities. The supramolecular stacking arrangement of the discoticcores was investigated by 2D 1H-1H double-quantum (DQ)methods, which were modified by incorporating the WATERGATEsuppression technique into the experiments in order toovercome severe phase problems arising from the strongsignal of the long alkyl sidechains. Molecular dynamics and sample orientation was probed throughthe generation of sideband patterns by reconversion rotorencoding in 2D recoupling experiments. These experimentswere extended by new recoupling schemes to enable thedistinction of motion and orientation effects. The solid-state NMR studies presented in this work aim tothe understanding of structure-property relationships in theinvestigated discotic materials, while the experimentsapplied to these materials include new recoupling schemeswhich make the desired information on molecular orientationand dynamics accessible without isotope labelling.
Resumo:
Methane is the most abundant reduced organic compound in the atmosphere. As the strongest known long-lived greenhouse gas after water vapour and carbon dioxide methane perturbs the radiation balance of Earth’s atmosphere. The abiotic formation of methane requires ultraviolet irradiation of organic matter or takes place in locations with high temperature and/or pressure, e.g. during biomass burning or serpentinisation of olivine, under hydrothermal conditions in the oceans deep or below tectonic plates. The biotic methane formation was traditionally thought to be formed only by methanogens under strictly anaerobic conditions, such as in wetland soils, rice paddies and agricultural waste. rnIn this dissertation several chemical pathways are described which lead to the formation of methane under aerobic and ambient conditions. Organic precursor compounds such as ascorbic acid and methionine were shown to release methane in a chemical system including ferrihydrite and hydrogen peroxide in aquatic solution. Moreover, it was shown by using stable carbon isotope labelling experiments that the thio-methyl group of methionine was the carbon precursor for the methane produced. Methionine, a compound that plays an important role in transmethylation processes in plants was also applied to living plants. Stable carbon isotope labelling experiments clearly verified that methionine acts as a precursor compound for the methane from plants. Further experiments in which the electron transport chain was inhibited suggest that the methane generation is located in the mitochondria of the plants. The abiotic formation of methane was shown for several soil samples. Important environmental parameter such as temperature, UV irradiation and moisture were identified to control methane formation. The organic content of the sample as well as water and hydrogen peroxide might also play a major role in the formation of methane from soils. Based on these results a novel scheme was developed that includes both biotic and chemical sources of methane in the pedosphere.rn
Resumo:
The Whittard canyon is a branching submarine canyon on the Celtic continental margin, which may act as a conduit for sediment and organic matter (OM) transport from the European continental slope to the abyssal sea floor. In situ stable-isotope labelling experiments (JC36-042-Spre01; JC36-100-Spre01) were conducted in the eastern and western branches of the Whittard canyon testing short term (3 - 7 day) responses of sediment communities to deposition of nitrogen-rich marine and nitrogen-poor terrigenous phytodetritus. Isotopic labels were traced into faunal biomass and bulk sediments, and the bacterial polar lipid fatty acids (PLFAs). These data files provide the data on macrofaunal and bacterial uptake of the isotopically-labelled organic carbon and nitrogen, and macrofaunal community composition at the two stations within the Whittard canyon
Resumo:
Rhizosphere microorganisms play an important role in soil carbon flow, through turnover of root exudates, but there is little information on which organisms are actively involved or on the influence of environmental conditions on active communities. In this study, a (CO2)-C-13 pulse labelling field experiment was performed in an upland grassland soil, followed by RNA-stable isotope probing (SIP) analysis, to determine the effect of liming on the structure of the rhizosphere microbial community metabolizing root exudates. The lower limit of detection for SIP was determined in soil samples inoculated with a range of concentrations of C-13-labelled Pseudomonas fluorescens and was found to lie between 10(5) and 10(6) cells per gram of soil. The technique was capable of detecting microbial communities actively assimilating root exudates derived from recent photo-assimilate in the field. Denaturing gradient gel electrophoresis (DGGE) profiles of bacteria, archaea and fungi derived from fractions obtained from caesium trifluoroacetate (CsTFA) density gradient ultracentrifugation indicated that active communities in limed soils were more complex than those in unlimed soils and were more active in utilization of recently exuded C-13 compounds. In limed soils, the majority of the community detected by standard RNA-DGGE analysis appeared to be utilizing root exudates. In unlimed soils, DGGE profiles from C-12 and C-13 RNA fractions differed, suggesting that a proportion of the active community was utilizing other sources of organic carbon. These differences may reflect differences in the amount of root exudation under the different conditions.