977 resultados para Isothermal titration calorymetry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study the nature of the interaction between Tween-20 and lactate dehydrogenase (LDH) was investigated using isothermal titration calorimetry (ITC). In addition the effects of the protein and surfactant on the interfacial properties were followed with interfacial rheology and surface tension measurements in order to understand the mechanism by which the surfactant prevents protein adsorption to the air– water interface. Comparisons were made with Tween-40 and Tween-80 in order to further investigate the mechanism. ITC measurements indicated a weak, probably hydrophobic, interaction between Tween-20 and LDH. Prevention of LDH adsorption to the air–water interface by the Tween surfactants was correlated with surface energy rather than surfactant CMC. While surface pressure appears to be the main driving force for the displacement of LDH from the air–water interface by Tween-20 a solubilisation mechanism may exist for other protein molecules. More generally the results of this study highlight the value of the use of ITC and interfacial measurements in characterising the surface behaviour of mixed surfactant and protein systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isothermal titration microcalorimetry (ITC) has been applied to investigate protein−tannin interactions. Two hydrolyzable tannins were studied, namely myrabolan and tara tannins, for their interaction with bovine serum albumin (BSA), a model globular protein, and gelatin, a model proline-rich random coil protein. Calorimetry data indicate that protein−tannin interaction mechanisms are dependent upon the nature of the protein involved. Tannins apparently interact nonspecifically with the globular BSA, leading to binding saturation at estimated tannin/BSA molar ratios of 48:1 for tara- and 178:1 for myrabolan tannins. Tannins bind to the random coil protein gelatin by a two-stage mechanism. The energetics of the first stage show evidence for cooperative binding of tannins to the protein, while the second stage indicates gradual saturation of binding sites as observed for interaction with BSA. The structure and flexibility of the tannins themselves alters the stoichiometry of the interaction, but does not appear to have any significant affect on the overall binding mechanism observed. This study demonstrates the potential of ITC for providing an insight into the nature of protein−tannin interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isothermal titration microcalorimetry (ITC) has been applied to investigate protein-tannin interactions. Two hydrolyzable tannins were studied, namely myrabolan and tara tannins, for their interaction with bovine serum albumin (BSA), a model globular protein, and gelatin, a model proline-rich random coil protein. Calorimetry data indicate that protein-tannin interaction mechanisms are dependent upon the nature of the protein involved. Tannins apparently interact nonspecifically with the globular BSA, leading to binding saturation at estimated tannin/BSA molar ratios of 48:1 for tara- and 178:1 for myrabolan tannins. Tannins bind to the random coil protein gelatin by a two-stage mechanism. The energetics of the first stage show evidence for cooperative binding of tannins to the protein, while the second stage indicates gradual saturation of binding sites as observed for interaction with BSA. The structure and flexibility of the tannins themselves alters the stoichiometry of the interaction, but does not appear to have any significant affect on the overall binding mechanism observed. This study demonstrates the potential of ITC for providing an insight into the nature of protein-tannin interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isothermal titration microcalorimetry (ITC) has been applied to investigate protein-tannin interactions. Two hydrolyzable tannins were studied, namely myrabolan and tara tannins, for their interaction with bovine serum albumin (BSA), a model globular protein, and gelatin, a model proline-rich random coil protein. Calorimetry data indicate that protein-tannin interaction mechanisms are dependent upon the nature of the protein involved. Tannins apparently interact nonspecifically with the globular BSA, leading to binding saturation at estimated tannin/BSA molar ratios of 48:1 for tara- and 178:1 for myrabolan tannins. Tannins bind to the random coil protein gelatin by a two-stage mechanism. The energetics of the first stage show evidence for cooperative binding of tannins to the protein, while the second stage indicates gradual saturation of binding sites as observed for interaction with BSA. The structure and flexibility of the tannins themselves alters the stoichiometry of the interaction, but does not appear to have any significant affect on the overall binding mechanism observed. This study demonstrates the potential of ITC for providing an insight into the nature of protein-tannin interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction of epicatechin with bovine serum albumin (BSA) was studied by isothermal titration calorimetry. The binding constant (K) and associated thermodynamic binding parameters (n, Delta H) were determined for the interaction at three solution concentrations of BSA using a binding model assuming independent binding sites. These data show weak non-covalent binding of epicatechin to BSA. The interaction energetics varied with BSA concentration in the calorimeter cell, suggesting that the binding of epicatechin induced BSA aggregation. The free energy (Delta G) remained constant within a range of 2 kJ mol(-1) and negative entropy was observed, indicating an enthalpy driven exothermic interaction. It is concluded that the non-covalent epicatechin-BSA complex is formed by hydrogen bonding. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interpolymer complexes (IPCs) formed between complimentary polymers in solution have shown a wide range of applications from drug delivery to biosensors. This work describes the combined use of isothermal titration calorimetry and surface plasmon resonance to investigate the thermodynamic and kinetic processes during hydrogen-bonded interpolymer complexation. Varied polymers that are commonly used in layer-by-layer coatings and pharmaceutical preparations were selected to span a range of chemical functionalities including some known IPCs previously characterized by other techniques, and other polymer combinations with unknown outcomes. This work is the first to comprehensively detail the thermodynamic and kinetic data of hydrogen bonded IPCs, aiding understanding and detailed characterization of the complexes. The applicability of the two techniques in determining thermodynamic, gravimetric and kinetic properties of IPCs is considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A unique series of oligomeric ellagitannins was used to study their interactions with bovine serum albumin (BSA) by isothermal titration calorimetry. Oligomeric ellagitannins, ranging from monomer to heptamer and a mixture of octamer–undecamers, were isolated as individual pure compounds. This series allowed studying the effects of oligomer size and other structural features. The monomeric to trimeric ellagitannins deviated most from the overall trends. The interactions of ellagitannin oligomers from tetramers to octa–undecamers with BSA revealed strong similarities. In contrast to the equilibrium binding constant, enthalpy showed an increasing trend from the dimer to larger oligomers. It is likely that first the macrocyclic part of the ellagitannin binds to the defined binding sites on the protein surface and then the “flexible tail” of the ellagitannin coats the protein surface. The results highlight the importance of molecular flexibility to maximize binding between the ellagitannin and protein surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have used isothermal titration calorimetry to investigate the vesicle-to-micelle transition in dioctadecyldimethylammonium bromide (DODAB) and chloride (DODAC) vesicle dispersions induced by the nonionic surfactant octaethylene glycol n-dodecyl monoether (C12E8) at room temperature. Small and giant unilamellar vesicles were prepared by sonication and without sonication, respectively, of the pure cationic surfactants at low concentrations in water. The titration of 1.0 mM DODAX (X = Cl- and Br-) by a concentrated micellar solution of C12E8 shows that the enthalpy of interaction (DeltaH(obs)) of C12E8 in micellar form with DODAX is always endothermic. The titration curves are understood on the basis of superposition of the enthalpies of partitioning of C12E8 into the bilayer, of micelle formation and of vesicle-to-micelle transformation. The enthalpy, DeltaH(obs), initially increases owing to the incorporation of C12E8 into the vesicle bilayer until the C12E8/DODAX saturation ratio (R-sat) is reached, then DeltaH(obs) decreases, in different ways for DODAB and DODAC, owing to degradation of vesicles and formation of mixed micelles and intermediary structures up to the C12E8/DODAX solubilization ratio, R-sol. Above R-sol only mixed micelles exist. The surfactant solubilization takes place in three stages. All the critical ratios are lower for DODAB than for DODAC, meaning that C12E8 solubilizes more strongly in DODAB for example, R-sat is 0.8 for DODAB and 1.2 for DODAC. Sonication has no significant effect on the transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] The correct determination of the energy generated or absorbed in the sample cell of an Isothermal Titration Calorimeter (ITC) requires a thorough analysis of the calorimetric signal. This means the identification and quantification of any thermal effect inherent to the working method. In this work, it is carried out a review on several thermal effects, studied by us in previous work, and which appear when an ITC is used for measuring the heats of mixing of liquids in a continuous mode. These effects are due to: (i) the difference between the temperature of the injected liquid and the temperature of the mixture during the mixing process, (ii) the increase of the liquid volume located in the mixing cell and (iii) the stirring velocity. Besides, methods for the identification and quantification of the mentioned effects are suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mixing of nanoparticles with polymers to form composite materials has been applied for decades. They combine the advantages of polymers (e.g., elasticity, transparency, or dielectric properties) and inorganic nanoparticles (e.g., specific absorption of light, magneto resistance effects, chemical activity, and catalysis etc.). Nanocomposites exhibit several new characters that single-phase materials do not have. Filling the polymeric matrix with an inorganic material requires its homogeneous distribution in order to achieve the highest possible synergetic effect. To fulfill this requirement, the incompatibility between the filler and the matrix, originating from their opposite polarity, has to be resolved. A very important parameter here is the strength and irreversibility of the adsorption of the surface active compound on the inorganic material. In this work the Isothermal titration calorimetry (ITC) was applied as a method to quantify and investigate the adsorption process and binding efficiencies in organic-inorganic–hybrid-systems by determining the thermodynamic parameters (ΔH, ΔS, ΔG, KB as well as the stoichiometry n). These values provide quantification and detailed understanding of the adsorption process of surface active molecules onto inorganic particles. In this way, a direct correlation between the adsorption strength and structure of the surface active compounds can be achieved. Above all, knowledge of the adsorption mechanism in combination with the structure should facilitate a more rational design into the mainly empirically based production and optimization of nanocomposites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le développement hématopoïétique est régulé par l’action combinée de facteurs de transcription lignée spécifiques et de la machinerie transcriptionnelle de base, permettant ainsi l’expression de gènes en temps et lieu appropriés. Les travaux présentés dans cette thèse portent sur l’étude structurale et fonctionnelle d’interactions décisives pour la régulation de l’expression de gènes et impliquant des domaines de transactivation (TAD). En effet, les interactions faisant intervenir les TAD d’activateurs permettent de réguler l’activation de la transcription de façon spécifique. La première étude présentée dans cette thèse relate l'identification et la caractérisation d'une nouvelle interaction entre deux facteurs de transcription : le facteur hématopoïétique GATA-1 et la protéine suppresseur de tumeur p53. En combinant des études in vitro par titrage calorimétrique en condition isotherme (ITC) et par spectroscopie RMN et des études in vivo, nous avons identifié et caractérisé cette nouvelle interaction. Il s'avère que le TAD de p53 et le domaine de liaison à l’ADN de GATA-1 sont les domaines minimaux requis pour la formation de ce complexe. L'inhibition de la voie p53 par GATA-1 s’est avérée être la conséquence majeure de cette interaction, permettant ainsi le maintien en vie des précurseurs érythrocytaires via l’inhibition de l’apoptose. Un deuxième type d’interaction a fait l’objet d’études : l’interaction entre divers TAD et la machinerie transcriptionnelle de base, plus spécifiquement avec le Facteur général de Transcription IIH (TFIIH). La structure des complexes constitués par la sous-unité Tfb1/p62 du facteur TFIIH en interaction avec le TAD viral de VP16 d’une part, et avec le TAD humain du facteur érythrocytaire « Erythroid Krüppel-like factor» (EKLF) d’autre part, ont été résolues par spectroscopie RMN. La structure du complexe Tfb1/VP16 a révélée que le mode de liaison de VP16 à Tfb1 est similaire au mode de liaison du TAD de p53 avec le même partenaire. En effet, les TAD de VP16 et de p53 forment tous deux une hélice α de 9 résidus en interaction avec Tfb1. En dépit de partager avec p53 et VP16 le même site de liaison sur Tfb1/p62, la structure RMN du complexe EKLF/Tfb1 démontre que le mode d’interaction de ce TAD se distingue du mode de liaison canonique des activeurs transcriptionnels. Etonnamment, EKLF adopte un mécanisme de liaison semblable au mécanisme de liaison du facteur général de transcription TFIIEα avec p62, leurs conformations demeurent étendues en interaction avec Tfb1/p62. En se basant sur nos données structurales, nous avons identifié un résidu dans le TAD d'EKLF décisif pour la formation du complexe EKLF/p62 : le Trp73. La mutation de cet acide aminé perturbe son interaction avec Tfb1PH/p62PH et réduit significativement l'activité transcriptionnelle d'EKLF dans les érythrocytes.