990 resultados para Ising, Modelo de


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ising and m-vector spin-glass models are studied, in the limit of infinite-range in-teractions, through the replica method. First, the m-vector spin glass, in the presence of an external uniform magnetic field, as well as of uniaxial anisotropy fields, is consi-dered. The effects of the anisotropics on the phase diagrams, and in particular, on the Gabay-Toulouse line, which signals the transverse spin-glass ordering, are investigated. The changes in the Gabay-Toulouse line, due to the presence of anisotropy fields which favor spin orientations along the Cartesian axes (m = 2: planar anisotropy; m = 3: cubic anisotropy), are also studied. The antiferromagnetic Ising spin glass, in the presence of uniform and Gaussian random magnetic fields, is investigated through a two-sublattice generalization of the Sherrington-Kirpaktrick model. The effects of the magnetic-field randomness on the phase diagrams of the model are analysed. Some confrontations of the present results with experimental observations available in the literature are discussed

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Magnetic fields can be produced by natural magnets, artificial magnets, and by circulating electric currents in wires and solenoids. An interesting experiment to observe the interaction between the magnetic field and free charges in a conductor, a magnet falling inside a tube made of conductive materials. The slowing down of the magnet by the appearance of a field in the opposite direction to the original one (Lenz's Law) is function the number of free electrons in the conductor and the electrical properties of this. Based on this, the objective of this study is to analyze the relationship between the electrical properties of conductors, copper and aluminum, with magnetic force on a neodymium magnet-iron-boron magnet falling inside a copper tube and aluminum, positioned vertically. In performing this experiment, we observed that it is a demonstration of Lenz-Faraday’s Law

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ferromagnetic and antiferromagnetic Ising model on a two dimensional inhomogeneous lattice characterized by two exchange constants (J1 and J2) is investigated. The lattice allows, in a continuous manner, the interpolation between the uniforme square (J2 = 0) and triangular (J2 = J1) lattices. By performing Monte Carlo simulation using the sequential Metropolis algorithm, we calculate the magnetization and the magnetic susceptibility on lattices of differents sizes. Applying the finite size scaling method through a data colappse, we obtained the critical temperatures as well as the critical exponents of the model for several values of the parameter α = J2 J1 in the [0, 1] range. The ferromagnetic case shows a linear increasing behavior of the critical temperature Tc for increasing values of α. Inwhich concerns the antiferromagnetic system, we observe a linear (decreasing) behavior of Tc, only for small values of α; in the range [0.6, 1], where frustrations effects are more pronunciated, the critical temperature Tc decays more quickly, possibly in a non-linear way, to the limiting value Tc = 0, cor-responding to the homogeneous fully frustrated antiferromagnetic triangular case.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Existem vários métodos de simulação para calcular as propriedades críticas de sistemas; neste trabalho utilizamos a dinâmica de tempos curtos, com o intuito de testar a eficiência desta técnica aplicando-a ao modelo de Ising com diluição de sítios. A Dinâmica de tempos curtos em combinação com o método de Monte Carlos verificou que mesmo longe do equilíbrio termodinâmico o sistema já se mostra insensível aos detalhes microscópicos das interações locais e portanto, o seu comportamento universal pode ser estudado ainda no regime de não-equilíbrio, evitando-se o problema do alentecimento crítico ( critical slowing down ) a que sistema em equilíbrio fica submetido quando está na temperatura crítica. O trabalho de Huse e Janssen mostrou um comportamento universal e uma lei de escala nos sistemas críticos fora do equilíbrio e identificou a existência de um novo expoente crítico dinâmico θ, associado ao comportamento anômalo da magnetização. Fazemos uima breve revisão das transições de fase e fenômeno críticos. Descrevemos o modelo de Ising, a técnica de Monte Carlo e por final, a dinâmica de tempos curtos. Aplicamos a dinâmica de tempos curtos para o modelo de Insing ferromagnéticos em uma rede quadrada com diluição de sítios. Calculamos o expoente dinâmicos θ e z, onde verificamos que existe quebra de classe de universilidade com relação às diferentes concentrações de sítios (p=0.70,0.75,0.80,0.85,0.90,0.95,1.00). calculamos também os expoentes estáticos β e v, onde encontramos pequenas variações com a desordem. Finalmente, apresentamos nossas conclusões e possíveis extensões deste trabalho

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work we have studied, by Monte Carlo computer simulation, several properties that characterize the damage spreading in the Ising model, defined in Bravais lattices (the square and the triangular lattices) and in the Sierpinski Gasket. First, we investigated the antiferromagnetic model in the triangular lattice with uniform magnetic field, by Glauber dynamics; The chaotic-frozen critical frontier that we obtained coincides , within error bars, with the paramegnetic-ferromagnetic frontier of the static transition. Using heat-bath dynamics, we have studied the ferromagnetic model in the Sierpinski Gasket: We have shown that there are two times that characterize the relaxation of the damage: One of them satisfy the generalized scaling theory proposed by Henley (critical exponent z~A/T for low temperatures). On the other hand, the other time does not obey any of the known scaling theories. Finally, we have used methods of time series analysis to study in Glauber dynamics, the damage in the ferromagnetic Ising model on a square lattice. We have obtained a Hurst exponent with value 0.5 in high temperatures and that grows to 1, close to the temperature TD, that separates the chaotic and the frozen phases

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

40.00% 40.00%

Publicador:

Resumo:

El modelo de Ising es un problema de física estadística que tiene solución exacta en dos dimensiones, para el caso de tres dimensiones es preciso utilizar procedimientos de simulación. En este trabajo se ha utilizado un método de Monte Carlo para estudiar el comportamiento del sistema en distintas situaciones, siendo de especial interés el estudio del paso por la transición de fase a la temperatura crítica (Temperatura de Curie, Tc). Se ha estudiado la cinética de los dominios magnéticos, considerando la estructura de los dominios desde el punto de vista de la energía, y en consecuencia, hemos tenido en cuenta la energía de canje que tiende a mantener alineados los espines de los electrones en los materiales ferromagnéticos. Este término contribuye a hacer mayor el espesor de la pared, por la tendencia a que los espines de los átomos vecinos se mantengan alineados. Se ha considerado el ferromagnetismo desde el punto de vista cuántico y basado en las propiedades de simetría de las funciones de onda de los electrones, que se manifiestan en variaciones de la energía electrostática de un sistema en función de la orientación de sus espines. Se han estudiado los efectos de histéresis que resultan al aplicar un campo magnético externo a la red y la orientación de los espines de la misma a lo largo de su evolución. Para la determinación de las propiedades de los materiales ferromagnéticos se utiliza el ciclo de histéresis aunque algunas de las propiedades magnéticas, como la dirección de anisotropía, no pueden ser deducidas directamente de esta manera. Se utilizan distintos métodos para la determinación de la anisotropía de las muestras. El acoplamiento entre la magnetización en zonas próximas a la superficie y la magnetización en zonas internas de la muestra puede ser utilizado para obtener un ciclo de histéresis, que permita obtener sensores magnéticos adaptados a las medidas que se quieran realizar. Mediante el control del campo coercitivo y la susceptibilidad se abre una línea de investigación para el desarrollo de sensores magnéticos

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The usual Ashkin-Teller (AT) model is obtained as a superposition of two Ising models coupled through a four-spin interaction term. In two dimension the AT model displays a line of fixed points along which the exponents vary continuously. On this line the model becomes soluble via a mapping onto the Baxter model. Such richness of multicritical behavior led Grest and Widom to introduce the N-color Ashkin-Teller model (N-AT). Those authors made an extensive analysis of the model thus introduced both in the isotropic as well as in the anisotropic cases by several analytical and computational methods. In the present work we define a more general version of the 3-color Ashkin-Teller model by introducing a 6-spin interaction term. We investigate the corresponding symmetry structure presented by our model in conjunction with an analysis of possible phase diagrams obtained by real space renormalization group techniques. The phase diagram are obtained at finite temperature in the region where the ferromagnetic behavior is predominant. Through the use of the transmissivities concepts we obtain the recursion relations in some periodical as well as aperiodic hierarchical lattices. In a first analysis we initially consider the two-color Ashkin-Teller model in order to obtain some results with could be used as a guide to our main purpose. In the anisotropic case the model was previously studied on the Wheatstone bridge by Claudionor Bezerra in his Master Degree dissertation. By using more appropriated computational resources we obtained isomorphic critical surfaces described in Bezerra's work but not properly identified. Besides, we also analyzed the isotropic version in an aperiodic hierarchical lattice, and we showed how the geometric fluctuations are affected by such aperiodicity and its consequences in the corresponding critical behavior. Those analysis were carried out by the use of appropriated definitions of transmissivities. Finally, we considered the modified 3-AT model with a 6-spin couplings. With the inclusion of such term the model becomes more attractive from the symmetry point of view. For some hierarchical lattices we derived general recursion relations in the anisotropic version of the model (3-AAT), from which case we can obtain the corresponding equations for the isotropic version (3-IAT). The 3-IAT was studied extensively in the whole region where the ferromagnetic couplings are dominant. The fixed points and the respective critical exponents were determined. By analyzing the attraction basins of such fixed points we were able to find the three-parameter phase diagram (temperature £ 4-spin coupling £ 6-spin coupling). We could identify fixed points corresponding to the universality class of Ising and 4- and 8-state Potts model. We also obtained a fixed point which seems to be a sort of reminiscence of a 6-state Potts fixed point as well as a possible indication of the existence of a Baxter line. Some unstable fixed points which do not belong to any aforementioned q-state Potts universality class was also found

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we study the phase transitions of the ferromagnetic three-color Ashkin-Teller Model in the hierarquical lattice generated by the Wheatstone bridge using real space renormalization group approach. With such technique we obtain the phase diagram and its critical points with respective critical exponents v. This model presents four phases: ferromagnetic, paramagnetic and two intermediates. Nine critical points were found, three of which are of Ising model type, three are of four states Potts model type, one is of eight states Potts model type and the last two which do not correspond to any Potts model with integer number of states. iv

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The new technique for automatic search of the order parameters and critical properties is applied to several well-know physical systems, testing the efficiency of such a procedure, in order to apply it for complex systems in general. The automatic-search method is combined with Monte Carlo simulations, which makes use of a given dynamical rule for the time evolution of the system. In the problems inves¬tigated, the Metropolis and Glauber dynamics produced essentially equivalent results. We present a brief introduction to critical phenomena and phase transitions. We describe the automatic-search method and discuss some previous works, where the method has been applied successfully. We apply the method for the ferromagnetic fsing model, computing the critical fron¬tiers and the magnetization exponent (3 for several geometric lattices. We also apply the method for the site-diluted ferromagnetic Ising model on a square lattice, computing its critical frontier, as well as the magnetization exponent f3 and the susceptibility exponent 7. We verify that the universality class of the system remains unchanged when the site dilution is introduced. We study the problem of long-range bond percolation in a diluted linear chain and discuss the non-extensivity questions inherent to long-range-interaction systems. Finally we present our conclusions and possible extensions of this work

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied the Ising model ferromagnetic as spin-1/2 and the Blume-Capel model as spin-1, > 0 on small world network, using computer simulation through the Metropolis algorithm. We calculated macroscopic quantities of the system, such as internal energy, magnetization, specific heat, magnetic susceptibility and Binder cumulant. We found for the Ising model the same result obtained by Koreans H. Hong, Beom Jun Kim and M. Y. Choi [6] and critical behavior similar Blume-Capel model