897 resultados para Ischemia and reperfusion
Resumo:
Objective-Inflammation and proteolysis crucially contribute to myocardial ischemia and reperfusion injury. The extracellular matrix metalloproteinase inducer EMMPRIN (CD147) and its ligand cyclophilin A (CyPA) may be involved in both processes. The aim of the study was to characterize the role of the CD147 and CyPA interplay in myocardial ischemia/reperfusion (I/R) injury.Methods and Results-Immunohistochemistry showed enhanced expression of CD147 and CyPA in myocardial sections from human autopsies of patients who had died from acute myocardial infarction and from mice at 24 hours after I/R. At 24 hours and 7 days after I/R, the infarct size was reduced in CD147(+/-) mice vs CD147(+/+) mice (C57Bl/6), in mice (C57Bl/6) treated with monoclonal antibody anti-CD147 vs control monoclonal antibody, and in CyPA(-/-) mice vs CyPA(+/+) mice (129S6/SvEv), all of which are associated with reduced monocyte and neutrophil recruitment at 24 hours and with a preserved systolic function at 7 days. The combination of CyPA(-/-) mice with anti-CD147 treatment did not yield further protection compared with either inhibition strategy alone. In vitro, treatment with CyPA induced monocyte chemotaxis in a CD147-and phosphatidylinositol 3-kinase-dependent manner and induced monocyte rolling and adhesion to endothelium (human umbilical vein endothelial cells) under flow in a CD147-dependent manner.Conclusion-CD147 and its ligand CyPA are inflammatory mediators after myocardial ischemia and reperfusion and represent potential targets to prevent myocardial I/R injury.
Resumo:
The role of protein kinase C (PKC) activation in ischemic preconditioning remains controversial. Since diacylglycerol is the endogenous activator of PKC and as such might be expected cardioprotective, we have investigated whether: (i) the diacylglycerol analog 1,2-dioctanoyl-sn-glycerol (DOG) can protect against injury during ischemia and reperfusion; (ii) any effect is mediated via PKC activation; and (iii) the outcome is influenced by the time of administration. Isolated rat hearts were perfused with buffer at 37°C and paced at 400 bpm. In Study 1, hearts (n=6/group) were subjected to one of the following: (1) 36 min aerobic perfusion (controls); (2) 20 min aerobic perfusion plus ischemic preconditioning (3 min ischemia/3 min reperfusion+5 min ischemia/5 min reperfusion); (3) aerobic perfusion with buffer containing DOG (10 μM) given as a substitute for ischemic preconditioning; (4) aerobic perfusion with DOG (10 μM) during the last 2 min of aerobic perfusion. All hearts then were subjected to 35 min of global ischemia and 40 min reperfusion. A further group (5) were perfused with DOG (10 μM) for the first 2 min of reperfusion. Ischemic preconditioning improved postischemic recovery of LVDP from 24±3% in controls to 71±2% (P<0.05). Recovery of LVDP also was enhanced by DOG when given just before ischemia (54±4%), however, DOG had no effect on the recovery of LVDP when used as a substitute for ischemic preconditioning (22±5%) or when given during reperfusion (29±6%). In Study 2, the first four groups of study were repeated (n=4–5/group) without imposing the periods of ischemia and reperfusion, instead hearts were taken for the measurement of PKC activity (pmol/min/mg protein±SEM). PKC activity after 36 min in groups (1), (2), (3) and (4) was: 332±102, 299±63, 521±144, and 340±113 and the membrane:cytosolic PKC activity ratio was: 5.6±1.5, 5.3±1.8, 6.6±2.7, and 3.9±2.1 (P=NS in each instance). In conclusion, DOG is cardioprotective but under the conditions of the present study is less cardioprotective than ischemic preconditioning, furthermore the protection does not appear to necessitate PKC activation prior to ischemia.
Resumo:
Purpose We investigated the effects of ischemia/reperfusion in the intestine (I/R-i) on purine receptor P2X(2)-immunoreactive (IR) neurons of the rat ileum. Methods The superior mesenteric artery was occluded for 45 min with an atraumatic vascular clamp and animals were sacrificed 4 h later. Neurons of the myenteric and submucosal plexuses were evaluated for immunoreactivity against the P2X(2) receptor, nitric oxide synthase (NOS), choline acetyl transferase (ChAT), calbindin, and calretinin. Results Following I/R-i, we observed a decrease in P2X(2) receptor immunoreactivity in the cytoplasm and surface membranes of neurons of the myenteric and submucosal plexuses. These studies also revealed an absence of calbindin-positive neurons in the I/R-i group. In addition, the colocalization of the P2X(2) receptor with NOS, ChAT, and calretinin immunoreactivity in the myenteric plexus was decreased following I/R-i. Likewise, the colocalization between P2X(2) and calretinin in neurons of the submucosal plexus was also reduced. In the I/R-i group, there was a 55.8% decrease in the density of neurons immunoreactive (IR) for the P2X(2) receptor, a 26.4% reduction in NOS-IR neuron, a 25% reduction in ChAT-IR neuron, and a 47% reduction in calretinin-IR neuron. The density of P2X(2) receptor and calretinin-IR neurons also decreased in the submucosal plexus of the I/R-i group. In the myenteric plexus, P2X(2)-IR, NOS-IR, ChAT-IR and calretinin-IR neurons were reduced in size by 50%, 49.7%, 42%, and 33%, respectively, in the I/R-i group; in the submucosal plexus, P2X(2)-IR and calretinin-IR neurons were reduced in size by 56% and 72.6%, respectively. Conclusions These data demonstrate that ischemia/reperfusion of the intestine affects the expression of the P2X(2) receptor in neurons of the myenteric and submucosal plexus, as well as density and size of neurons in this population. Our findings indicate that I/R-i induces changes in P2X(2)-IR enteric neurons that could result in alterations in intestinal motility.
Resumo:
Innate immune responses against microorganisms may be mediated by Toll-like receptors (TLRs). Intestinal ischemia-reperfusion (i-I/R) leads to the translocation of bacteria and/or bacterial products such as endotoxin, which activate TLRs leading to acute intestinal and lung injury and inflammation observed upon gut trauma. Here, we investigated the role of TLR activation by using mice deficient for the common TLR adaptor protein myeloid differentiation factor 88 (MyD88) on local and remote inflammation following intestinal ischemia. Balb/c and MyD88(-/-) mice were subjected to occlusion of the superior mesenteric artery (45 min) followed by intestinal reperfusion (4 h). Acute neutrophil recruitment into the intestinal wall and the lung was significantly diminished in MyD88(-/-) after i-I/R, which was confirmed microscopically. Diminished neutrophil recruitment was accompanied with reduced concentration of TNF-alpha and IL-1 beta level. Furthermore, diminished microvascular leak and bacteremia were associated with enhanced survival of MyD88(-/-) mice. However, neither TNF-alpha nor IL-1 beta neutralization prevented neutrophil recruitment into the lung but attenuated intestinal inflammation upon i-I/R. In conclusion, our data demonstrate that disruption of the TLR/MyD88 pathway in mice attenuates acute intestinal and lung injury, inflammation, and endothelial damage allowing enhanced survival.
Resumo:
Ischemia and reperfusion injury (IRI) are mainly caused by leukocyte activation, endothelial dysfunction and production of reactive oxygen species. Moreover, IRI can lead to a systemic response affecting distant organs, such as the lungs. The objective was to study the pulmonary inflammatory systemic response after renal IRI. Male C57Bl/6 mice were subjected to 45 min of bilateral renal ischemia, followed by 4, 6, 12, 24 and 48 h of reperfusion. Blood was collected to measure serum creatinine and cytokine concentrations. Bronchoalveolar lavage fluid (BALF) was collected to determine the number of cells and PGE(2) concentration. Expressions of iNOS and COX-2 in lung were determined by Western blot. Gene analyses were quantified by real time PCR. Serum creatinine increased in the IRI group compared to sham mainly at 24 h after IRI (2.57 +/- A 0.16 vs. 0.43 +/- A 0.07, p < 0.01). The total number of cells in BAL fluid was higher in the IRI group in comparison with sham, 12 h (100 x 10(4) +/- A 15.63 vs. 18.1x10(4) +/- A 10.5, p < 0.05) 24 h (124 x 10(4) +/- A 8.94 vs. 23.2x10(4) +/- A 3.5, p < 0.05) and 48 h (79 x 10(4) +/- A 15.72 vs. 22.2 x 10(4) +/- A 4.2, p < 0.05), mainly by mononuclear cells and neutrophils. Pulmonary COX-2 and iNOS were up-regulated in the IRI group. TNF-alpha, IL-1 beta, MCP-1, KC and IL-6 mRNA expression were up-regulated in kidney and lungs 24 h after renal IRI. ICAM-1 mRNA was up-regulated in lungs 24 h after renal IRI. Serum TNF-alpha, IL-1 beta and MCP-1 and BALF PGE(2) concentrations were increased 24 h after renal IRI. Renal IRI induces an increase of cellular infiltration, up-regulation of COX-2, iNOS and ICAM-1, enhanced chemokine expression and a Th1 cytokine profile in lung demonstrating that the inflammatory response is indeed systemic, possibly leading to an amplification of renal injury.
Resumo:
Renal ischemia and reperfusion injury (IRI) is considered an inflammatory syndrome. To move forward in its pathogenesis, we exploited the role of several cytokines on renal damages triggered by IRI. Specifically to evaluate the role of Th1 immune profile in this system, IL-12, IFN-gamma, and IFN-gamma/IL-12 deficient (KO) mice on C57BL/6 background and their controls were subjected to IRI. In each group, blood and kidney samples were harvested. Renal function was evaluated by serum creatinine and renal morphometric analyses. Gene expression of IL-6 and HO-1 were also investigated by Q-PCR. IFN-gamma KO animals presented the highest impairment in renal function compared to controls. Conversely, IL-12 KO animals were absolutely protected and, in a lesser extent, IFN-gamma/IL-12 KO double knockout was also protected from IRI. Gene expression analyses showed higher expression of HO-1, a cytoprotective gene, and IL-6, a pro-inflammatory cytokine, in IFN-gamma deficient animals subjected to IRI. Our results confirm that Th1 related cytokines such as IL-12 and IFN-gamma are critically involved in renal ischemia and reperfusion injury. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Ischemic-reperfusion injury (IRI) triggers an inflammatory response involving neutrophils/macrophages, lymphocytes and endothelial cells. Galectin-3 is a multi-functional lectin with a broad range of action such as promotion of neutrophil adhesion, induction of oxidative stress, mastocyte migration and degranulation, and production of pro-inflammatory cytokines. The aim of this study was evaluate the role of galectin-3 in the inflammation triggered by IRI. Galectin-3 knockout (KO) and wild type (wt) mice were subjected to 45 min of renal pedicle occlusion. Blood and kidney samples were collected at 6, 24, 48 and 120 h. Blood urea was analyzed enzymatically, while MCP-1, IL-6 and IL-1 beta were studied by real-time PCR. Reactive oxygen species (ROS) was investigated by flow cytometry. Morphometric analyses were performed at 6, 24, 48 and 120 h after reperfusion. Urea peaked at 24 h, being significantly lower in knockout animals (wt = 264.4 +/- 85.21 mg/dl vs. gal-3 KO = 123.74 +/- 29.64 mg/dl, P = 0.001). Galectin-3 knockout animals presented less acute tubular necrosis and a more prominent tubular regeneration when compared with controls concurrently with lower expression of MCP-1, IL-6, IL-1 beta, less macrophage infiltration and lower ROS production at early time points. Galectin-3 seems to play a role in renal IRI involving the secretion of macrophage-related chemokine, pro-inflammatory cytokines and ROS production.
Resumo:
Ischemia and reperfusion injury (IR) is an antigen independent inflammatory process that causes tissue damage. After IR, kidneys up-regulate leukocyte adhesion molecules and toll-like receptors (TLRs). Moreover, injured kidneys can also secrete factors (i.e. heat shock protein) which bind to TLRs and trigger intracellular events culminating with the increase in the gene expression of inflammatory cytokines. FTY720 is an immunomodulatory compound and protects at least in part kidneys submitted to IR. The mechanisms associated with FTY720`s beneficial effects on kidneys after IR remain elusive. We investigated whether FTY720 administration in mice submitted to kidney IR is associated with modulation of TLR2 and TLR4 expression. C57BL/6 mice submitted to 30 min of renal pedicles clamp were evaluated for serum parameters (creatinine, urea and nitric oxide), kidney histology, spleen and kidney infiltrating cells expression of TLR2 and TLR4, resident kidney cells expression of TLR2 and TLR4 and IL-6 protein expression in kidney. FTY720-treated mice presented decrease in serum creatinine, urea and nitric oxide, diminished expression of TLR2 and TLR4 both in spleen and kidney infiltrating cells, and reduced kidney IL-6 protein expression in comparison with IR non-treated mice. However, acute tubular necrosis was present both in IR non-treated and IR + FTY720-treated groups. Also, FTY720 did not prevent TLR2 and TLR4 expression in kidney resident cells. In conclusion, FTY720 can promote kidney function recovery after IR by reducing the inflammatory process. Further studies are needed in order to establish whether TLR2 and TLR4 down regulation should be therapeutically addressed as protective targets of renal function and structure after IR. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
To investigate the role of β-(1-3)-D-glucan on 99mTc labelled Escherichia coli translocation and cytokines secretion in rats submitted to small bowel ischemia/reperfusion injury. Methods: Five groups (n=10 each) of Wistar rats were subjected to control(C), sham(S), group IR subjected to 45 min of bowel ischemia/60 min of reperfusion(I/R), and group I/R+glucan subjected to 45 min of bowel ischemia/60 min of reperfusion(I/R) and injected with 2mg/Kg intramuscular. Translocation of labelled bacteria to mesenteric lymph nodes, liver, spleen, lung and serum was determined using radioactivity/count and colony forming units/g(CFU/g). Serum TNFα, IL-1β, IL-6, IL-10 were measured by ELISA. Results: CFU/g and radioactivity/count were higher in I/R than in I/R+glucan rats. In C, S and S+glucan groups, bacteria and radioactivity/count were rarely detected. The I/R+glucan rats had enhancement of IL-10 and suppressed production of serum TNFα, IL-1β and, IL-6, compared to I/R untreated animals. Conclusion: The β-(1-3)-D-glucan modulated the production of pro-inflammatory and anti-inflammatory cytokines during bowel ischemia/reperfusion, and attenuated translocation of labelled bacteria
Resumo:
Ischemia and reperfusion of the small intestine disrupts gut barrier, causes bacterial translocation and activates inflammatory responses. An experimental study was planned to evaluate if 99mTc labelled Escherichia coli translocates to mesenteric lymph nodes, liver, spleen, lung and serum of rats submitted to mesenteric ischemia/reperfusion. Additionally, it was observed if the time of reperfusion influences the level of translocation. METHODS: Forty male Wistar rats underwent 45 minutes of gut ischemia by occlusion of the superior mesenteric artery. The translocation of labelled bacteria to different organs and portal serum was determined in rats reperfused for 30 minutes, 24 hours, sham(S) and controls(C), using radioactivity count and colony forming units/g (CFU). RESULTS: All the organs from rats observed for 24 hours after reperfusion had higher levels of radioactivity and positive cultures (CFU) than did the organs of rats reperfused for 30 minutes, C and S, except in the spleen (p<0,01). CONCLUSION: The results of this study indicated that intestinal ischemia/reperfusion led to bacterial translocation, mostly after 24 hours of reperfusion
Resumo:
To investigate the role of β-(1-3)-D-glucan on 99mTc labelled Escherichia coli translocation and cytokines secretion in rats submitted to small bowel ischemia/reperfusion injury. Methods: Five groups (n=10 each) of Wistar rats were subjected to control(C), sham(S), group IR subjected to 45 min of bowel ischemia/60 min of reperfusion(I/R), and group I/R+glucan subjected to 45 min of bowel ischemia/60 min of reperfusion(I/R) and injected with 2mg/Kg intramuscular. Translocation of labelled bacteria to mesenteric lymph nodes, liver, spleen, lung and serum was determined using radioactivity/count and colony forming units/g(CFU/g). Serum TNFα, IL-1β, IL-6, IL-10 were measured by ELISA. Results: CFU/g and radioactivity/count were higher in I/R than in I/R+glucan rats. In C, S and S+glucan groups, bacteria and radioactivity/count were rarely detected. The I/R+glucan rats had enhancement of IL-10 and suppressed production of serum TNFα, IL-1β and, IL-6, compared to I/R untreated animals. Conclusion: The β-(1-3)-D-glucan modulated the production of pro-inflammatory and anti-inflammatory cytokines during bowel ischemia/reperfusion, and attenuated translocation of labelled bacteria
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aim. Lower-limb traumatic injury associated with ischemia and followed by reperfusion (I/R) is a common severe situation in muscle lesions due to trauma and hypoxia followed by local and systemic injuries induced by oxygen-derived free radical release during reperfusion. The aim of this study was to evaluate the attenuating effects of trimetazidine (TMZ) and N-acetylcysteine (NAC) in such situation.Methods. The muscles at the root of the right hind limb of Wistar rats were cross-sectioned, preserving femoral vessels and nerves and clamping the femoral artery for four hours. The clamp was then released and the femoral artery has been reperfused for 2 hours. Rats were randomly divided in groups of ten as follows: Group 1: sham I/R, treated with saline; Group 2: I/R, treated with saline; Group 3: sham I/R, treated with TMZ (7.5 mg/kg/dose); Group 4: sham I/R, treated with NAC (375 mg/kg/dose); Group 5: I/R treated with TMZ (7.5 mg/kg/dose); Group 6: I/R treated with NAC (375 mg/kg/dose). All rats received two intravenous bolus injections of the drugs, one before ischemia and one before reperfusion. Oxidative stress in plasma (MDA, total, oxidized and reduced glutathione), creatinephosphokinase (CPK), optical and electron microscopy and pelvic extremity circumference and volume were studied.Results. No statistical differences were found between the groups for MDA or total and reduced glutathione. Oxidized glutathione increased significantly in groups 5 and 2. Limb circumference as well as limb volume increased in all groups over time, mainly in groups 5, 2 and 1. CPK increased in all groups, being highest in groups 5, 6 and 2. Histological lesions were present in all but sham groups, being less severe in group 6. Soleus muscle analyses at electron microscopy exhibit some degree of alteration in all groups.Conclusion. This experimental model simulated severe limb trauma associated with ischemia and reperfusion, and, as such, it was aggressive, causing severe injury and local inflammatory reaction. The model did not show antioxidant action from NAC, and possible antioxidant action from TMZ was insufficient to attenuate tissue injuries. [Int Angiol 2009;28:412-7]