973 resultados para Irrigation System
Resumo:
Sixteen irrigation subsystems of the Mahi Bajaj Sagar Project, Rajasthan, India, are evaluated and selection of the most suitable/best is made using data envelopment analysis (DEA) in both deterministic and fuzzy environments. Seven performance-related indicators, namely, land development works (LDW), timely supply of inputs (TSI), conjunctive use of water resources (CUW), participation of farmers (PF), environmental conservation (EC), economic impact (EI) and crop productivity (CPR) are considered. Of the seven, LDW, TSI, CUW, PF and EC are considered inputs, whereas CPR and EI are considered outputs for DEA modelling purposes. Spearman rank correlation coefficient values are also computed for various scenarios. It is concluded that DEA in both deterministic and fuzzy environments is useful for the present problem. However, the outcome of fuzzy DEA may be explored for further analysis due to its simple, effective data and discrimination handling procedure. It is inferred that the present study can be explored for similar situations with suitable modifications.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In trickle irrigation systems, the design is based on the pre-established emission uniformity (EU) which is the combined result of the equipment characteristics and its hydraulic configuration. However, this desired value of the EU may not be confirmed by the final project (in field conditions) and neither by the yield uniformity. The hypotheses of this research were: a) the EU of a trickle irrigation system at field conditions is equal to the emission uniformity pre-established in the its design; b) EU has always the lowest value when compared with other indicators of uniformity; c) the discharge variation coefficient (VC) is not equal to production variation coefficient in the operational unit; d) the difference between the discharge variation coefficient and the productivity variation coefficient depends on the water depth applied. This study aimed to evaluate the relationship between EU used in the irrigation system design and the final yield uniformity. The uniformity indicators evaluated were: EU, distribution uniformity (UD) and the index proposed by Barragan & Wu (2005). They were compared estimating the performance of a trickle irrigation system applied in a citrus orchard with dimensions of 400m x 600m. The design of the irrigation system was optimized by a Linear Programming model. The tree rows were leveled in the larger direction and the spacing adopted in the orchard was 7m x 4m. The manifold line was always operating on a slope condition. The sensitivity analysis involved different slopes, 0, 3, 6, 9 and 12%, and different values of emission uniformity, 60, 70, 75, 80, 85, 90 and 94%. The citrus yield uniformity was evaluated by the variation coefficient. The emission uniformity (EU) after design differed from the EU pre-established, more sharply in the initial values lower than 90%. Comparing the uniformity indexes, the EU always generated lower values when compared with the UD and with the index proposed by Barragan. The emitter variation coefficient was always lower than the productivity variation coefficient. To obtain uniformity of production, it is necessary to consider the irrigation system uniformity and mainly the water depth to be applied.
Resumo:
Conventional wisdom in many agricultural systems across the world is that farmers cannot, will not, or should not pay the full costs associated with surface water delivery. Across Organisation for Economic Co-operation and Development (OECD) countries, only a handful can claim complete recovery of operation, maintenance, and capital costs; across Central and South Asia, fees are lower still, with farmers in Nepal, India, and Kazakhstan paying fractions of a U.S. penny for a cubic meter of water. In Pakistan, fees amount to roughly USD 1-2 per acre per season. However, farmers in Pakistan spend orders of magnitude more for diesel fuel to pump groundwater each season, suggesting a latent willingness to spend for water that, under the right conditions, could potentially be directed toward water-use fees for surface water supply. Although overall performance could be expected to improve with greater cost recovery, asymmetric access to water in canal irrigation systems leaves the question open as to whether those benefits would be equitably shared among all farmers in the system. We develop an agent-based model (ABM) of a small irrigation command to examine efficiency and equity outcomes across a range of different cost structures for the maintenance of the system, levels of market development, and assessed water charges. We find that, robust to a range of different cost and structural conditions, increased water charges lead to gains in both efficiency and concomitant improvements in equity as investments in canal infrastructure and system maintenance improve the conveyance of water resources further down watercourses. This suggests that, under conditions in which (1) farmers are currently spending money to pump groundwater to compensate for a failing surface water system, and (2) there is the possibility that through initial investment to provide perceptibly better water supply, genuine win-win solutions can be attained through higher water-use fees to beneficiary farmers.
Resumo:
Converting from an existing irrigation system is often seen as high risk by the land owner. The significant financial investment and the long period over which the investment runs is also complicated by the uncertainty associated with long term input costs (such as energy), crop production, and the continually evolving natural resource management rules and policy. Irrigation plays a pivotal part in the Burdekin sugarcane farming system. At present the use of furrow irrigation is by far the most common form due to the ease of use, relatively low operating cost and well established infrastructure currently in place. The Mulgrave Area Farmer Integrated Action (MAFIA) grower group, located near Clare in the lower Burdekin region, identified the need to learn about sustainable farming systems with a focus on the environment, social and economic implications. In early 2007, Hesp Faming established a site to investigate the use of overhead irrigation as an alternative to furrow irrigation and its integration with new farming system practices, including Green Cane Trash Blanketing (GCTB). Although significant environmental and social benefits exist, the preliminary investment analysis indicates that the Overhead Low Pressure (OHLP) irrigation system is not adding financial value to the Hesp Farming business. A combination of high capital costs and other offsetting factors resulted in the benefits not being fully realised. A different outcome is achieved if Hesp Farming is able to realise value on the water saved, with both OHLP irrigation systems displaying a positive NPV. This case study provides a framework to further investigate the economics of OHLP irrigation in sugarcane and it is anticipated that with additional data a more definitive outcome will be developed in the future.
Resumo:
An integrated reservoir operation model is presented for developing effective operational policies for irrigation water management. In arid and semi-arid climates, owing to dynamic changes in the hydroclimatic conditions within a season, the fixed cropping pattern with conventional operating policies, may have considerable impact on the performance of the irrigation system and may affect the economics of the farming community. For optimal allocation of irrigation water in a season, development of effective mathematical models may guide the water managers in proper decision making and consequently help in reducing the adverse effects of water shortage and crop failure problems. This paper presents a multi-objective integrated reservoir operation model for multi-crop irrigation system. To solve the multi-objective model, a recent swarm intelligence technique, namely elitist-mutated multi-objective particle swarm optimisation (EM-MOPSO) has been used and applied to a case study in India. The method evolves effective strategies for irrigation crop planning and operation policies for a reservoir system, and thereby helps farming community in improving crop benefits and water resource usage in the reservoir command area.
Resumo:
The aim of the seawater irrigation system (SIS) is to clean up shrimp pond effluent and provide high quality seawater for shrimp farming. The system has 3 components: water intake; treatment reservoir and discharge system. There are criteria for site selection because shrimp farmers are required to form associations so they can work closely together. The construction site must be on the coastal area outside a mangrove forest and located away from a production agricultural area. All construction sites must have undergone an environmental impact assessment, and should be located on the area listed in Thailand's Coastal Zone Management Plan. Five SIS projects, which cover a culture area of 6,500 ha with 1,300 farmers (families), were completed and operated. The Department of Fisheries has planned for another 28 projects, that will cover almost 44,000 ha of culture area.
Resumo:
The crop management practice of alternate wetting and drying (AWD) is being promoted by IRRI and the national research and extension program in Bangladesh and other parts of the world as a water-saving irrigation practice that reduces the environmental impact of dry season rice production through decreased water usage, and potentially increases yield. Evidence is growing that AWD will dramatically reduce the concentration of arsenic in harvested rice grains conferring a third major advantage over permanently flooded dry season rice production. AWD may also increase the concentration of essential dietary micronutrients in the grain. However, three crucial aspects of AWD irrigation require further investigation. First, why is yield generally altered in AWD? Second, is AWD sustainable economically (viability of farmers' livelihoods) and environmentally (aquifer water table heights) over long-term use? Third, are current cultivars optimized for this irrigation system? This paper describes a multidisciplinary research project that could be conceived which would answer these questions by combining advanced soil biogeochemistry with crop physiology, genomics, and systems biology. The description attempts to show how the breakthroughs in next generation sequencing could be exploited to better utilize local collections of germplasm and identify the molecular mechanisms underlying biological adaptation to the environment within the context of soil chemistry and plant physiology.
Resumo:
The reuse of treated wastewater (reclaimed water) for irrigation is a valuable strategy to maximise available water resources, but the often marginal quality of the water can present agricultural challenges. Semi-structured interviews were held with Jordanian farmers to explore how they perceive the quality of reclaimed water. Of the 11 farmers interviewed who irrigate with reclaimed water directly near treatment plants, 10 described reclaimed water either positively or neutrally. In contrast, 27 of the 39 farmers who use reclaimed water indirectly, after it is blended with fresh water, viewed the resource negatively, although 23 of the indirect reuse farmers also recognised the nutrient benefits. Farmer perception of reclaimed water may be a function of its quality, but consideration should also be given to farmers’ capacity to manage the agricultural challenges associated with reclaimed water (salinity, irrigation system damage, marketing of produce), their actual and perceived capacity to control where and when reclaimed water is used, and their capacity to influence the quality of the water delivered to the farm.
Resumo:
Neste trabalho, ajustou-se um modelo matemático para quantificar o efeito do rendimento do motor elétrico sobre os custos de um sistema de bombeamento para irrigação na estrutura tarifária de energia elétrica convencional e horo-sazonal verde, bem como calcular o tempo de recuperação do capital investido no equipamento de maior rendimento. em seguida, o mesmo foi aplicado a um sistema de irrigação tipo pivô central em duas opções de rendimento do motor elétrico: 92,6% (linha padrão) e 94,3% (linha alto rendimento), sendo que o custo de aquisição do primeiro correspondeu a 70% do segundo. A potência do motor elétrico era de 100 cv. Os resultados mostraram que o modelo permitiu avaliar se um motor de alto rendimento era viável economicamente em relação ao motor-padrão em cada estrutura tarifária. Nas duas estruturas tarifárias, o motor de alto rendimento não foi viável. Na tarifa horo-sazonal verde, somente seria viável se seu rendimento fosse 4,46% superior ao do motor-padrão. Na tarifa convencional, somente seria viável se o ganho de rendimento superasse 2,71%.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Non-pressure compensating drip hose is widely used for irrigation of vegetables and orchards. One limitation is that the lateral line length must be short to maintain uniformity due to head loss and slope. Any procedure to increase the length is appropriate because it represents low initial cost of the irrigation system. The hypothesis of this research is that it is possible to increase the lateral line length combining two points: using a larger spacing between emitters at the beginning of the lateral line and a smaller one after a certain distance; and allowing a higher pressure variation along the lateral line under an acceptable value of distribution uniformity. To evaluate this hypothesis, a nonlinear programming model (NLP) was developed. The input data are: diameter, roughness coefficient, pressure variation, emitter operational pressure, relationship between emitter discharge and pressure. The output data are: line length, discharge and length of the each section with different spacing between drippers, total discharge in the lateral line, multiple outlet adjustment coefficient, head losses, localized head loss, pressure variation, number of emitters, spacing between emitters, discharge in each emitter, and discharge per linear meter. The mathematical model developed was compared with the lateral line length obtained with the algebraic solution generated by the Darcy-Weisbach equation. The NLP model showed the best results since it generated the greater gain in the lateral line length, maintaining the uniformity and the flow variation under acceptable standards. It had also the lower flow variation, so its adoption is feasible and recommended.
Resumo:
Upland rice (Oryza sativa L.) cultivation has been increasing in importance in Asia while water availability for irrigation has been decreasing because of rapid growth in industry and urban centers. Therefore, the development of technologies that increase upland rice yields under aerobic conditions, thereby saving water, would be an effective strategy to avoid a decrease in global rice grain production. The use of the no-tillage system (NTS) and cover crops that maintain soil moisture would prove advantageous in the move toward sustainable agriculture. However, upland rice develops better in plowed soil, and it has been reported that this crop does not perform well under the NTS. Therefore, the aim of this study was to investigate the effect of cover crops on upland rice grain yield and yield components sowed in a NTS. A field experiment was conducted during two growing seasons (2008-2009 and 2009-2010), and treatments consisted of growing rice under five cover crops in a NTS and two control treatments under the conventional tillage system (plowing once and disking twice). Treatments were carried out in a randomized block design with three replications. Our findings are as follows: On average, Brachiaria brizantha (12.32Mgha-1), Brachiaria ruziziensis (11.08Mgha-1) and Panicum maximum (11.62Mgha-1) had outstanding biomass production; however, these grasses provided the worst upland rice yields (2.30, 2.04, and 2.67Mgha-1, respectively) and are not recommended as cover crops before upland rice. Millet and fallow exhibited the fastest straw degradation (half-lives of 52 and 54 days, respectively), and millet exhibited the fastest nitrogen release (N half-life of 28 days). The use of a NTS was promising when millet was used as a cover crop; this allowed the highest upland rice yield (3.94Mgha-1) and did not statistically differ from plowed fallow (3.52Mgha-1). © 2012 Elsevier B.V.
Resumo:
The aim of this study was to compare the use of water and nitrogen on ratoon sugarcane during irrigated and rain-fed conditions, and to assess the production potential of stalks and sugar with different rates of N-fertilizer on the subsurface drip-irrigated management. The experimental design was a randomized block with four replications for each experiment and treatments: (T1) irrigated, 0kg N ha-1; (T2) irrigated, 70kg N ha-1; (T3) irrigated, 140kg N ha-1; (T4) irrigated, 210kg N ha-1; (T5) not irrigated, 0kg N ha-1, and (T6) not irrigated, 140kg N ha-1. Biometric, technological, dry matter and yield variables were analyzed among the treatments. The irrigation system together with the application of N-fertilizer at 140kg ha-1 presented significant differences in dry matter accumulation of shoots, and for the production of stalks and sugar, respectively 94, 105 and 106%, higher when compared to the not irrigated, without N-fertilizer (T5). There was a positive and synergistic effect of irrigation with N-fertilizer on the productivity of stalks and sugar. Ratoon sugarcane irrigated with subsurface dripping had the highest yield (22Mg ha-1 of sugar) with the dosage of 140kg ha-1 N.