989 resultados para Iron oxidation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ferrous iron bio-oxidation by Acidithiobacillus ferrooxidans immobilized on polyurethane foam was investigated. Cells were immobilized on foams by placing them in a growth environment and fully bacterially activated polyurethane foams (BAPUFs) were prepared by serial subculturing in batches with partially bacterially activated foam (pBAPUFs). The dependence of foam density on cell immobilization process, the effect of pH and BAPUF loading on ferrous oxidation were studied to choose operating parameters for continuous operations. With an objective to have high cell densities both in foam and the liquid phase, pretreated foams of density 50 kg/m3 as cell support and ferrous oxidation at pH 1.5 to moderate the ferric precipitation were preferred. A novel basket-type bioreactor for continuous ferrous iron oxidation, which features a multiple effect of stirred tank in combination with recirculation, was designed and operated. The results were compared with that of a free cell and a sheet-type foam immobilized reactors. A fivefold increase in ferric iron productivity at 33.02 g/h/L of free volume in foam was achieved using basket-type bioreactor when compared to a free cell continuous system. A mathematical model for ferrous iron oxidation by Acidithiobacillus ferrooxidans cells immobilized on polyurethane foam was developed with cell growth in foam accounted by an effectiveness factor. The basic parameters of simulation were estimated using the experimental data on free cell growth as well as from cell attachment to foam under nongrowing conditions. The model predicted the phase of both oxidation of ferrous in shake flasks by pBAPUFs as well as by fully activated BAPUFs for different cell loadings in foam. Model for stirred tank basket bioreactor predicted within 5% both transient and steady state of the experiments closely for the simulated dilution rates. Bio-oxidation at high Fe2+ concentrations were simulated with experiments when substrate and product inhibition coefficients were factored into cell growth kinetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para a obtenção de grau de doutor em Bioquímica pelo Instituto de Tecnologia Química e Biológica. Universidade Nova de Lisboa

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stability of the Glossoscolex paulistus hemoglobin (HbGp), in two iron oxidation states (and three forms), as monitored by optical absorption, fluorescence emission and circular dichroism (CD) spectroscopies, in the presence of the chaotropic agent urea, is studied. HbGp oligomeric dissociation, denaturation and iron oxidation are observed. CD data show that the cyanomet-HbGp is more stable than the oxy-form. Oxy- and cyanomet-HbGp show good fits on the basis of a two state model with critical urea concentrations at 220-222 nm of 5.1 +/- 0.2 and 6.1 +/- 0.1 mol/L, respectively. The three-state model was able to reveal a subtle second transition at lower urea concentration (1.0-2.0 mol/L) associated to partial oligomeric dissociation. The intermediate state for oxy- and cyanomet-HbGp is very similar to the native state. For met-HbGp, a different equilibrium, in the presence of urea, is observed. A sharp transition at 1.95 +/- 0.05 mol/L of denaturant is observed, associated to oligomeric dissociation and hemichrome formation. In this case, analysis by a three-state model reveals the great similarity between the intermediate and the unfolded states. Analysis of spectroscopic data, by two-state and three-state models, reveals consistency of obtained thermodynamic parameters for HbGp urea denaturation. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Permeable reactive barriers (PRBs) of zero-valent iron (Fe0) are increasingly being used to remediate contaminated ground water. Corrosion of Fe0 filings and the formation of precipitates can occur when the PRB material comes in contact with ground water and may reduce the lifespan and effectiveness of the barrier. At present, there are no routine procedures for preparing and analyzing the mineral precipitates from Fe0 PRB material. These procedures are needed because mineralogical composition of corrosion products used to interpret the barrier processes can change with iron oxidation and sample preparation. The objectives of this study were (i) to investigate a method of preparing Fe0 reactive barrier material for mineralogical analysis by X-ray diffraction (XRD), and (ii) to identify Fe mineral phases and rates of transformations induced by different mineralogical preparation techniques. Materials from an in situ Fe0 PRB were collected by undisturbed coring and processed for XRD analysis after different times since sampling for three size fractions and by various drying treatments. We found that whole-sample preparation for analysis was necessary because mineral precipitates occurred within the PRB material in different size fractions of the samples. Green rusts quickly disappeared from acetone-dried samples and were not present in air-dried and oven-dried samples. Maghemite/magnetite content increased over time and in oven-dried samples, especially after heating to 105°C. We conclude that care must be taken during sample preparation of Fe0 PRB material, especially for detection of green rusts, to ensure accurate identification of minerals present within the barrier system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Permeable reactive barriers (PRBs) of zero-valent iron (Fe0) are increasingly being used to remediate contaminated ground water. Corrosion of Fe0 filings and tbe formation of precipitates can occur when the PRB material comes in contact with ground water and may reduce the lifespan and effectiveness of the barrier. At present, there are no routine procedures for preparing and analyzing the mineral precipitates from Fe0 PRB material. These procedures are needed because mineralogical composition of corrosion products used to interpret the barrier processes can change with iron oxidation and sample preparation. The objectives of this study were (i) to investigate a method of preparing Fe0 reactive barrier material for mineralogical analysis by X-ray diffraction (XRD), and (ii) to identify Fe mineral phases and rates of transformations induced by different mineralogical preparation techniques. Materials from an in situ Fe0 PRB were collected by undisturbed coring and processed for XRD analysis after different times since sampling for three size fractions and by various drying treatments. We found that whole-sample preparation for analysis was necessary because mineral precipitates occurred within the PRB material in different size fractions of the samples. Green rusts quickly disappeared from acetone-dried samples and were not present in air-dried and oven-dried samples Maghemite/magnetite content increased over time and in oven-dried samples, especially after heating to 105°C. We conclude that care must be taken during sample preparation of Fe0 PRB material, especially for detection of green rusts, to ensure accurate identification of minerals present within the barrier system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Chalcopyrite oxidation was evaluated with two acidophilic thiobacilli that are important in bioleaching processes. Acidithiobacillus thiooxidans in pure culture did not oxidize CuFeS2 but oxidized externally added S in the presence of CuFeS2. Acidithiobacillus ferrooxidans released Cu2+ and soluble Fe from chalcopyrite, and the time course lead to a gradual passivation of chalcopyrite whereby Cu2+ dissolution leveled off. Fe3+ acted as a chemical oxidant in CuFeS2 leaching and was reduced to Fe2+. Parallel bacterial re-oxidation of Fe2+ contributed to a high Fe3+/Fe2+ ratio and an increase in redox potential. Chemical oxidation of chalcopyrite was slow compared with A. ferrooxidans-initiated solubilization. X-ray analysis revealed new solid phases: (i) jarosite, found in solids from A. ferrooxidans cultures and in chemical controls that initially received Fe2+ or Fe3+, and (ii) S-0, found mostly in iron-amended A. ferrooxidans culture and the corresponding chemical controls. (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The outer-sphere oxidation of Fell in the mixed-valence complex trans-[(LCoNCFeII)-Co-14S-N-III(CN)(6)](-), being L-14S an N3S2 macrocylic donor set on the cobalt(III) center, has been studied. The comparison with the known processes of N-5 macrocycle complexes has been carried out in view of the important differences occurring on the redox potential of the cobalt center. The results indicate that the outer-sphere oxidation reactions with S2O82- and [Co(ox)(3)](3-) involve a great amount of solvent-assisted hydrogen bonding that, as a consequence from the change from two amines to sulfur donors, are more restricted. This is shown by the more positive values found for DeltaS(double dagger) and DeltaV(double dagger). The X-ray structure of the oxidized complex has been determined, and it is clearly indicative of the above-mentioned solvent-assisted hydrogen bonding between nitrogen and cyanide donors on the cobalt and iron centers, respectively. trans-[(LCoNCFeIII)-Co-14S-N-III(CN)(6)], as well as the analogous N-5 systems trans-[(LCoNCFeIII)-Co-14-N-III(CN)(6)], trans-[(LCoNCFeIII)-Co-15-N-III-(CN)(6)], and cis-[(LCoNCFeIII)-Co-n-N-III(CN)(6)], Oxidize water to hydrogen peroxide at pH > 10 with a rather simple stoichiometry, i.e., [(LCoNCFeIII)-Co-n-N-III(CN)(5)] + OH- - [(LCoNCFeII)-Co-n-N-III(CN)(5)](-) + 1/2H(2)O(2). In this way, the reversibility of the iron oxidation process is achieved. The determination of kinetic and thermal and pressure activation parameters for this water to hydrogen peroxide oxidation leads to the kinetic determination of a cyanide based OH- adduct of the complex. A second-order dependence on the base concentration is associated with deprotonation of this adduct to produce the final inner-sphere reduction process. The activation enthalpies are found to be extremely low (15 to 35 kJ mol(-1)) and responsible for the very fast reaction observed. The values of DeltaS(double dagger) and DeltaV(double dagger) (-76 to -113 J K-1 mol(-1) and -5.5 to -8.9 cm(3) mol(-1), respectively) indicate a highly organized but not very compressed transition state in agreement with the inner-sphere one-electron transfer from O2- to Fe-III.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Role of indigenous microbes in the formation and conversion of bauxite minerals is illustrated. Many types of microorganisms such as fungi, heterotrophic and autotrophic bacteria and yeasts inhabit bauxite ore deposits bringing about biogenesis and biomineraliztion. Organisms capable of iron oxidation and reduction and solubilising calcium carbonate and silica can be isolated from bauxite deposits and are used to bring about selective mineral beneficiation to remove iron, calcium and silica. Use of Paenibacillus polymyxa in the efficient removal of calcium from low grade bauxites is demonstrated through bioreactor technology. Similarly, for iron removal from bauxite, iron-reducing bacteria can be used. Silicate bacteria aid in selective silica solubilisation to control alumina: silica ratios. Microorganisms can also be used to bring about environmental control with respect to red mud disposal through bioremediation technology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Työssä on tehty kineettinen simulointimalli sinkkirikasteen liuotusprosessista. Prosessi on pieni osa Kokkolan sinkinvalmistusprosessia, jonka muita osia ovat: pasutus, neutraaliliuotus, konversio, liuospuhdistus ja elektrolyysi. Rikasteen liuotukseen tulee konversioprosessin liuos ja liuotuksesta lähtevä neste menee takaisin neutraaliliuotukseen. Saostunut jarosiitti läjitetään. Kokkolan liuotusprosessi koostuu liettoreaktorista ja kahdesta neljän liuotusreaktorin sarjasta. Liuotukseen syötetään paluuhappoa liettoreaktoriin ja liuotuspiirien ensimmäisiin liuotusreaktoreihin. Happea syötetään kaikkiin liuotusreaktoreihin. Prosessin mallintamiseen käytettiin Aspen Plus-simulointiohjelmaa, johon pystyttiin syöttämään kineettisiä yhtälöitä. Reaktionopeusyhtälöitä käytettiin raudan hapetuksen, sulfidien liuotuksen ja jarosiitiin saostumisen mallintamiseen, eli kaikkiin liuotusreaktoreissa tapahtuviin reaktioihin. Kineettiset yhtälöt etsittiin kirjallisuudesta. Liettoreaktori puolestaan mallinnettiin syöttämällä ohjelmaan reaktioyhtälöt ja antamalla niille etenemisasteet. Jarosiitin liukenemisesta työssä on tehty laboratoriokokeita, koska aiheesta ei kirjallisuudesta löytynyt kineettistä tietoa. Liuotuskokeissa käytetyn kiintoaineen kuitenkin todettiin sisältävän liikaa götiittiä, että tuloksista olisi voitu laskea kinetiikkaa jarosiitin liukenemiselle. Simulointimallilla laskettiin yksi tapaus vertailukohdaksi, johon malliin tehtyjä muutoksia verrattiin. Mallilla tutkittiin konversiosta tulevan jarosiitin määrän vaikutusta, reaktorikoon merkitystä ja rikasteen liuotuksen sekä jarosiitin saostuksen reaktionopeuksien muutoksen vaikutuksia. Käytetyillä kineettisillä yhtälöillä reaktioiden todettiin tarvitsevan vain ¾ käytetystä reaktiotilavuudesta, rikasteen liuotusnopeuden kohtalaisen pienellä hidastamisen todettiin vähentävän sinkin saantoa ja jarosiitin saostuksen reaktionopeuden kasvulla todettiin myös olevan negatiivinen vaikutus sinkin saantoon. Simulointimallissa käytettyjen reaktionopeusyhtälöiden varmentaminen kokeilla todettiin tarpeelliseksi, sillä jo kohtalaisen pienillä muutoksilla havaittiin olevan merkitystä prosessin toimivuuteen. Lisäksi todettiin jarosiitin liukenemisen huomioimisen olevan tarpeen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effectiveness of remediation of the highly acidic and transition metal polluted mine water discharge from the Wheal Jane Mine by the Wheal Jane Passive Treatment Plant is described. The success of the remediation required that all the system components work as predicted. The study shows considerable success in the removal of key toxic metals and clearly demonstrates the potential for natural attenuation of acid mine drainage, particularly iron oxidation, by microbial populations. The Wheal Jane Passive Treatment Plant provides the only experimental facility of its kind. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Iron oxidation in the bacterial ferritin EcFtnA from Escherichia coli shows marked differences from its homologue human H-chain ferritin (HuHF). While the amino acid residues that constitute the dinuclear center in these proteins are highly conserved, EcFtnA has a third iron-binding site (C site) in close proximity to the dinuclear center that is seemingly responsible for these differences. Here, we describe the first thermodynamic study of Fe2+ binding to EcFtnA and its variants to determine the location of the primary ferrous ion-binding sites on the protein and to better understand the role of the third C site in iron binding. Isothermal titration calorimetric analyses of the wild-type protein reveal the presence of two main classes of binding sites in the pH range of 6.5-7.5, ascribed to Fe2+ binding, first at the A and then the B sites. Site-directed mutagenesis of ligands in the A, B, or C sites affects the apparent Fe2+-binding stoichiometries at the unaltered sites. The data imply some degree of inter- and intrasubunit negative cooperative interaction between sites. Unlike HuHF where only the A site initially binds Fe2+, both A and B sites in EcFtnA bind Fe2+, implying a role for the C site in influencing the binding of Fe2+ at the B site of the di-iron center of EcFtnA. The ITC equations describing a binding model for three classes of independent binding sites are reported here for the first time.