908 resultados para Iron chelator


Relevância:

100.00% 100.00%

Publicador:

Resumo:

myo-Inositol phosphates possessing the 1,2,3-trisphosphate motif share the remarkable ability to completely inhibit iron-catalysed hydroxyl radical formation. The simplest derivative, myo-inositol 1,2,3-trisphosphate [Ins(1,2,3)P3], has been proposed as an intracellular iron chelator involved in iron transport. The binding conformation of Ins(1,2,3)P3 is considered to be important to complex Fe3+ in a 'safe' manner. Here, a pyrene-based fluorescent probe, 4,6-bispyrenoyl-myo-inositol 1,2,3,5-tetrakisphosphate [4,6-bispyrenoyl Ins(1,2,3,5)P4], has been synthesised and used to monitor the conformation of the 1,2,3-trisphosphate motif using excimer fluorescence emission. Ring-flip of the cyclohexane chair to the penta-axial conformation occurs upon association with Fe3+, evident from excimer fluorescence induced by π-π stacking of the pyrene reporter groups, accompanied by excimer formation by excitation at 351 nm. This effect is unique amongst biologically relevant metal cations, except for Ca 2+ cations exceeding a 1:1 molar ratio. In addition, the thermodynamic constants for the interaction of the fluorescent probe with Fe3+ have been determined. The complexes formed between Fe 3+ and 4,6-bispyrenoyl Ins(1,2,3,5)P4 display similar stability to those formed with Ins(1,2,3)P3, indicating that the fluorescent probe acts as a good model for the 1,2,3-trisphosphate motif. This is further supported by the antioxidant properties of 4,6-bispyrenoyl Ins(1,2,3,5)P4, which closely resemble those obtained for Ins(1,2,3)P3. The data presented confirms that Fe3+ binds tightly to the unstable penta-axial conformation of myo-inositol phosphates possessing the 1,2,3-trisphosphate motif. © 2010 The Royal Society of Chemistry.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Xylella fastidiosa is the etiologic agent of a wide range of plant diseases, including citrus variegated chlorosis (CVC), a major threat to citrus industry. The genomes of several strains of this phytopathogen were completely sequenced, enabling large-scale functional studies. DNA microarrays representing 2,608 (91.6%) coding sequences (CDS) of X. fastidiosa CVC strain 9a5c were used to investigate transcript levels during growth with different iron availabilities. When treated with the iron chelator 2,2`-dipyridyl, 193 CDS were considered up-regulated and 216 were considered down-regulated. Upon incubation with 100 mu M ferric pyrophosphate, 218 and 256 CDS were considered up- and down-regulated, respectively. Differential expression for a subset of 44 CDS was further evaluated by reverse transcription-quantitative PCR. Several CDS involved with regulatory functions, pathogenicity, and cell structure were modulated under both conditions assayed, suggesting that major changes in cell architecture and metabolism occur when X. fastidiosa cells are exposed to extreme variations in iron concentration. Interestingly, the modulated CDS include those related to colicin V-like bacteriocin synthesis and secretion and to functions of pili/fimbriae. We also investigated the contribution of the ferric uptake regulator Fur to the iron stimulon of X. fastidiosa. The promoter regions of the strain 9a5c genome were screened for putative Fur boxes, and candidates were analyzed by electrophoretic mobility shift assays. Taken together, our data support the hypothesis that Fur is not solely responsible for the modulation of the iron stimulon of X fastidiosa, and they present novel evidence for iron regulation of pathogenicity determinants.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ehrlichia canis, etiologic agent of Canine Monocytic Ehrlichiosis, is an obligatory intracellular bacterium that parasitizes monocytes and macrophages. In this study we analyzed the role of the cytoskeleton specifically actin microfilaments and microtubules, components of inositol phospholipid signaling pathway such as phospholipase C (PLC), protein kinase (PTK) and calcium channels as well as the role of iron in the E. canis proliferation in DH82 cells. Different inhibitory compounds were used for each component: Cytochalasin D (inhibits actin polymerization), Nocodazole (inhibits microtubule polymerization), Neomycin (PLC inhibitor), Genistein (PTK inhibitor), Verapamil (calcium channel blocker) and Deferoxamine (iron chelator). We observed a significant decrease in the total number of bacteria in infected cells treated suggesting that these cellular components analized are essentials to E. canis proliferation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the facultative anaerobe Escherichia coli, the transcription factor FNR (fumarate nitrate reduction) regulates gene expression in response to oxygen deprivation. To investigate how the activity of FNR is regulated by oxygen availability, two mutant proteins, DA154 and LH28-DA154, which have enhanced in vivo activity in the presence of oxygen, were purified and compared. Unlike other previously examined FNR preparations, the absorption spectrum of LH28-DA154 had two maxima at 324 nm and 419 nm, typical of iron-sulfur (Fe-S)-containing proteins. Consistent with these data, metal analysis showed that only the LH28-DA154 protein contained a significant amount of iron and acid-labile sulfide, and, by low temperature EPR spectroscopy, a signal typical of a [3Fe-4S]+ cluster was detected. The LH28-DA154 protein that contained the Fe-S cluster also contained a higher proportion of dimers and had a 3- to 4-fold higher apparent affinity for the target DNA than the DA154 protein. In agreement with this, we found that when the LH28-DA154 protein was treated with an iron chelator (alpha,alpha'-dipyridyl), it lost its characteristic absorption and the apparent affinity for DNA was reduced 6-fold. However, increased DNA binding and the characteristic absorption spectrum could be restored by in vitro reconstitution of the Fe-S center. DNA binding of the LH28-DA154 protein was also affected by the redox state of the Fe-S center, since protein exposed to oxygen bound 1/10th as much DNA as the protein reduced anaerobically with dithionite. The observation that DNA binding is enhanced when the Fe-S center is reduced indicates that the redox state of the Fe-S center affects the DNA-binding activity of this protein and suggests a possible mechanism for regulation of the wild-type protein.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The search for orally effective drugs for the treatment of iron overload disorders is an important goal in improving the health of patients suffering diseases such as beta-thalassemia major. Herein, we report the syntheses and characterization of some new members of a series of N-aroyl-N'-picolinoyl hydrazine chelators (the H2IPH analogs). Both 1:1 and 1:2 Fe-III:L complexes were isolated and the crystal structures of Fe(HPPH)Cl-2, Fe(4BBPH)Cl-2, Fe(HAPH)(APH) and Fe(H3BBPH)(3BBPH) were determined (H2PPH=N,N'-bis-picolinoyl hydrazine; H(2)APH=N-4-aminobenzoyl-N'-picolinoyl hydrazine, H(2)3BBPH=N-3-bromobenzoyl-N'-picolinoylhydrazine and H(2)4BBPH=N-(4-bromobenzoyl)-N'-(picolinoyl)hydrazine). In each case, a tridentate N,N,O coordination mode of each chelator with Fe was observed. The Fe-III complexes of these ligands have been synthesized and their structural, spectroscopic and electrochemical characterization are reported. Five of these new chelators, namely H2BPH (N-(benzoyl)-N'-(picolinoyl)hydrazine), H2TPH (N-(2-thienyl)-N'-(picolinoyl)-hydrazine), H2PPH, H(2)3BBPH and H(2)4BBPH, showed high efficacy at mobilizing Fe-59 from cells and inhibiting Fe-59 uptake from the serum Fe transport protein, transferrin (Tf). Indeed, their activity was much greater than that found for the chelator in current clinical use, desferrioxamine (DFO), and similar to that observed for the orally active chelator, pyridoxal isonicotinoyl hydrazone (H2PIH). The ability of the chelators to inhibit Fe-59 uptake could not be accounted for by direct chelation of Fe-59-Tf. The most effective chelators also showed low antiproliferative activity which was similar to or less than that observed with DFO, which is important in terms of their potential use as agents to treat Fe-overload disease.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effects of haem limitation and iron restriction on cells of non typable Haemophilus influenzae were investigated. Haem limitation was achieved by adding concentrations of haem to growth media which resulted in substantial decreases in final cell yields. Iron restriction was achieved by substituting protoporphyrin IX (PPIX) for haem in the growth medium and adding an iron chelator to the system. The effect of these nutrient limitations on a) outer membrane composition, and b) respiratory systems of non typable H.influenzae was investigated. Several of the strains examined produced new PPIX-specific outer membrane proteins when cultured utilising PPIX as a porphyrin source. The immune response of patients with bronchiectasis to outer membrane antigens of H.influenzae cultured under iron-restricted conditions was analysed by ELISA and immunoblotting techniques. ELISA analysis revealed that individuals with severe bronchiectasis had high titres of antibodies directed against H.influenzae OMs in both serum and sputum. Immunoblotting with homologous serum showed that where PPIX-specific OMPs were produced they were antigenic and were recognised by patients' serum. This suggested that these H.influenzae OMPs may be expressed in vivo. Additionally, the development of the immune responses to non typable H.influenzae outer membrane antigens was investigated using a rat lung model. Bacteria encased in agar beads were inoculated intratracheally into rat lungs, infection was established, and the immune response monitored for 6 weeks. The animals developed antibodies to PPIX-specific OMPs during the course of infection, providing further evidence that H.influenzae express these novel OMP antigens when growing in vivo. Studies in vitro on respiratory systems of phenotypically altered H.influenzae showed that bacteria grown utilising PPIX as a porphyrin source, or under conditions of iron-restriction produced ten fold fewer cytochromes than cells grown in nutrient excess, while haem limited H.influenzae produced no detectable cytochromes. Respiration of various substrates was depressed in haem limited and in PPIX-grown cultures as compared with cells grown in nutrient excess.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Escherichia coli enteroagregativa (EAEC) é um patógeno relacionado ao desenvolvimento de quadros de diarréia aguda ou persistente. A resposta inflamatória induzida por EAEC está relacionada à liberação de interleucina 8, que atua estimulando a transmigração de neutrófilos através do epitélio. Os macrófagos, de forma similar aos neutrófilos, são células fagocíticas que produzem espécies reativas de oxigênio (ERO), como o peróxido de hidrogênio (H2O2). Neste trabalho, avaliamos as consequências da interação de diferentes cepas clínicas com macrófagos humanos ativados da linhagem U-937. Todas as cepas testadas apresentaram filamentos nos testes de aderência aos macrófagos, diferentemente do que ocorre na interação com outras linhagens celulares como HEp-2, T84 e Caco-2. O ferro é um microelemento essencial para bactérias, sendo utilizado como cofator de enzimas e que também pode participar da geração de ERO através da reação de Fenton. Considerando-se a possibilidade de que o H2O2 produzido pelos macrófagos possa gerar radical hidroxil através da reação de Fenton, testes de aderência foram realizados com as amostras cultivadas na presença do captador de ferro 2,2-dipiridil. Tal fato não suprimiu a formação de filamentos, entretanto diminuiu a aderência das cepas EAEC 042 e 17-2. Com o objetivo de produzir uma resposta adaptativa ao H2O2, as culturas bacterianas foram pré-tratadas com uma dose sub-letal de H2O2 por 60 minutos antes de aderirem aos macrófagos. Nossos resultados mostraram que o pré-tratamento também não inibiu o aparecimento de filamentos em relação às culturas não tratadas. Além disto, foi observado que o pré-tratamento com o H2O2 reduziu a aderência das amostras de EAEC ao tapete celular. A filamentação é uma das respostas SOS, induzida pela presença de danos e/ou bloqueio na síntese da molécula de DNA. Com o objetivo de verificar se o H2O2 produzido pelos macrófagos estaria causando danos induzindo o sistema SOS e a filamentação bacteriana, foram realizados testes de viabilidade com mutantes derivados de E. coli K12 deficientes em enzimas do reparo por excisão de bases (BW535) e na resposta SOS (DM49). Nossos resultados mostram que os mutantes apresentaram os níveis de sobrevivência semelhantes ao observado para cepa selvagem isogênica (AB1157). Todos estes resultados em conjunto indicam que o H2O2 não é o indutor da filamentação nos testes de aderência. Macrófagos ativados apresentam ação microbicida através da ação da enzima indolamina dioxigenase (IDO), associada à redução do aminoácido L-triptofano. Desta forma, realizamos testes qualitativos de aderência de EAEC aos macrófagos suplementando o meio de interação com este aminoácido. Nossos resultados mostram que a adição de triptofano ao meio de interação reduz o número de filamentos por campo. Desta forma, aventamos a hipótese de que a depleção do triptofano seja responsável pela indução de resposta SOS, tendo como conseqüência a filamentação das bactérias.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Erythropoietin (Epo), a glycoprotein hormone produced principally in the fetal kidney and in the adult liver in response to hypoxia, is the prime regulator of growth and differentiation in erythroid progenitor cells. The regulation of Epo gene expression is not fully understood, but two mechanisms have been proposed. One involves the participation of a heme protein capable of reversible oxygenation and the other depends on the intracellular concentration of reactive oxygen species (ROS), assumed to be a function of pO2. We have investigated the production of Epo in response to three stimuli, hypoxia, cobalt chloride, and the iron chelator desferrioxamine, in Hep3B cells. As expected, hypoxia caused a marked rise in Epo production. When the cells were exposed to the paired stimuli of hypoxia and cobalt no further increase was found. In contrast, chelation of iron under hypoxic conditions markedly enhanced Epo production, suggesting that the two stimuli act by separate pathways. The addition of carbon monoxide inhibited hypoxia-induced Epo production, independent of desferrioxamine concentration. Taken together these data support the concept that pO2 and ROS are sensed independently.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The oxidised low density lipoprotein (LDL) hypothesis of atherosclerosis proposes that LDL undergoes oxidation in the interstitial fluid of the arterial wall. We have shown that aggregated (vortexed) nonoxidised LDL was taken up by J774 mouse macrophages and human monocyte-derived macrophages and oxidised intracellularly, as assessed by the microscopic detection of ceroid, an advanced lipid oxidation product. Confocal microscopy showed that the ceroid was located in the lysosomes. To confirm these findings, J774 macrophages were incubated with acetylated LDL, which is internalised rapidly to lysosomes, and then incubated (chase incubation) in the absence of any LDL. The intracellular levels of oxysterols, measured by HPLC, increased during the chase incubation period, showing that LDL must have been oxidised inside the cells. Furthermore, we found that this oxidative modification was inhibited by lipid-soluble antioxidants, an iron chelator taken up by fluid-phase pinocytosis and the lysosomotropic drug chloroquine, which increases the pH of lysosomes. The results indicate that LDL oxidation can occur intracellularly, most probably within lysosomes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The oxidized low density lipoprotein (LDL) hypothesis of atherosclerosis proposes that LDL undergoes oxidation in the interstitial fluid of the arterial wall. We have shown that aggregated (vortexed) nonoxidized LDL was taken up by J774 mouse macrophages and human monocyte-derived macrophages and oxidized intracellularly, as assessed by the microscopic detection of ceroid, an advanced lipid oxidation product. Confocal microscopy showed that the ceroid was located in the lysosomes. To confirm these findings, J774 macrophages were incubated with acetylated LDL, which is internalized rapidly to lysosomes, and then incubated (chase incubation) in the absence of any LDL. The intracellular levels of oxysterols, measured by HPLC, increased during the chase incubation period, showing that LDL must have been oxidized inside the cells. Furthermore, we found that this oxidative modification was inhibited by lipid-soluble antioxidants, an iron chelator taken up by fluid-phase pinocytosis and the lysosomotropic drug chloroquine, which increases the pH of lysosomes. The results indicate that LDL oxidation can occur intracellularly, most probably within lysosomes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Iron is an essential element for many cellular functions, including the immune response against intracellular pathogens. In this study, we aimed evaluate the effect of iron on IRP2, IFN-γ, TNF-α, IL-6, IL-10, MIG and IP10 expression in PBMC and assess the effect of the spleen parasite load on the expression of these genes in the spleen of L. infantum naturally infected dogs. Blood sample from 7 DTH+ donor was collected and PBMC was obtained. The cells were cultivated in absence (iron chelator desferroximane, DFO 10 μM supplemented media) or in presence of iron (hemin 6 mM) for 1 h, followed by stimulation with Leishmania infatum antigen for 4 h. 44 dog spleen samples were obtained and parasite load in this organ was determinate by qPCR. Gene expression was analyzed by qPCR and cytokine production quantified by flow cytometry. In antigen stimulated cells, genes involved in immune response are significantly more expressed in presence of iron. T CD4+ and TCD8+ lymphocytes produces IFN-γ, TNF-α and IL-10 possibly in iron dependent pathway. Monocytes antigen stimulated reduced TNF-α, IL-6 and IL-10 production in presence of iron. We found spleen of infected dogs IRP2 expression increases according to parasite load in that organ, while an inverse profile was found for IFN-γ, TNF-α e IL-10 expression. These results suggest that T lymphocytes depends on iron to produce IFN-γ, TNF-α and IL-10, while iron seems to inhibit cytokine production in monocytes. So, we propose an immunoregulatory mechanism carried out by iron during L. infantum infection in humans and dogs

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Low-density seedings of yeast cells of Paracoccidioides brasiliensis give poor growth (as assessed by plating efficiency test) on conventional mycological agar media, and therefore growth-promoting factors for this fungus were sought. Water-extracts of yeast cells of six P. brasiliensis isolates were all considerably effective in promoting the growth of low-density seedings of P. brasiliensis isolates Pb-18 and Hachisuga, but had little effect on isolate Bt-4. Horse serum, at a concentration range of 2-4%, moderately or considerably promoted the growth of these P. brasiliensis isolates. Combinations of the fungus cell extracts with horse serum were highly effective in promoting the growth of all of the fungal isolates. The fungus cell extracts showed siderophore (microbial iron carrier) activity. An iron-chelator, ethylenediaminetetraacetic acid, at a concentration of 100 μM also highly promoted the growth of the fungal isolates in the presence of horse serum, and ferric ion added to culture medium was considerably effective in the growth promotion. These results suggest that deficient utilization of external iron by the fungus cell is one of the growth-limiting processes for low-density seedings of yeast cells of P. brasiliensis on conventional mycological agar media.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanisms used by Paracoccidioides brasiliensis to survive into phagocytic cells are not clear. Cellular iron metabolism is of critical importance to the growth of several intracellular pathogens whose capacity to multiply in mononuclear phagocytes is dependent on the availability of intracellular iron. Thus, the objective of this paper was to investigate the role of intracellular iron in regulating the capacity of P. brasiliensis yeast cells to survive within human monocytes. Treatment of monocytes with deferoxamine, an iron chelator, suppressed the survival of yeasts in a concentration-dependent manner. The effect of deferoxamine was reversed by iron-saturated transferrin (holotransferrin) but not by nonsaturated transferrin (apotransferrin). These results strongly suggest that P. brasiliensis survival in human monocytes is iron dependent.