954 resultados para Iron bioavailability


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Some authors consider minerals from organic sources more bioavailable for pig nutrition in comparison with inorganic sources. To evaluate the relative iron bioavailability from the organic source iron carbo-amino-phospho-chelate (ICAPC) to weanling piglets, it was conducted an experiment with 126 commercial piglets, using iron sulfate monohydrate (S) as standard. The experiment had a randomized block design with seven treatments (diet without adding specific source of iron, diet with 50, 100 and 150 ppm iron from S and diet with 50, 100 and 150 ppm iron from ICAPC), six replications and three animals per experimental unit. Performance parameters (average daily gain - ADG, feed: gain ratio - F:G) and blood variables (hemoglobin - Hb, hematocrit - Ht, transferrin - TR, latent iron-binding capacity - LIBC, total iron-binding capacity - TIBC, serum iron - Fe and transferrin saturation index - TSI) were evaluated. At the end of the experiment a piglet from each experimental unit was slaughtered and its liver and spleen removed for assessment of iron concentration by flame atomic absorption spectrometry (FAAS). The evaluated sources of iron yielded similar results for the variables of interest, but the increase in iron intake was followed by a linear increase in ADG, Hb, Ht, Fe and TSI as well as a linear decrease in the values of F:G, TR, LIBC and TIBC. Iron bioavailabilities from both ICAPC and S sources are similar for weanling piglets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Iron (Fe) bioavailability in unpolished, polished grain and bran fraction of five rice genotypes with a range of Fe contents was measured by in vitro digestion and cultured Caco-2 cells of cooked grain. There was a significant difference in Fe bioavailability among the five rice genotypes tested, in both the unpolished and polished grain. The range of Fe bioavailability variation in polished rice was much wider than that of unpolished, suggesting the importance of using Fe levels and bioavailability in polished rice grain as the basis for selecting high-Fe rice cultivars for both agronomic and breeding purposes. Milling and polishing the grain to produce polished (or white) rice increased Fe bioavailability in all genotypes. Iron bioavailability in polished rice was high in the UBON2 and Nishiki, intermediate in both IR68144 and KDML105, and low in CMU122. All genotypes had low bioavailability of Fe in bran fraction compared to unpolished and polished grain, except in CMU122. CMU122 contained the lowest level of bioavailable Fe in unpolished and polished grain and bran, because of the dark purple pericarp colored grain and associated tannin content. The level of bioavailable Fe was not significantly correlated with grain Fe concentration or grain phytate levels among these five genotypes tested. The negative relationship between Fe bioavailability and the levels of total extractable phenol was only observed in unpolished (r = -0.83**) and bran fraction (r = -0.50*). The present results suggested that total extractable phenol and tannin contents could also contribute to lowering bioavailability of Fe in rice grain, in addition to phytate. (c) 2006 Society of Chemical Industry

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The seeding of an expanse of surface waters in the equatorial Pacific Ocean with low concentrations of dissolved iron triggered a massive phytoplankton bloom which consumed large quantities of carbon dioxide and nitrate that these microscopic plants cannot fully utilize under natural conditions. These and other observations provide unequivocal support for the hypothesis that phytoplankton growth in this oceanic region is limited by iron bioavailability.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Phytic acid (PA) is the main phosphorus storage compound in cereals, legumes and oil seeds. In human populations where phytate-rich cereals such as wheat, maize and rice are a staple food, phytate may lead to mineral and trace element deficiency. Zinc appears to be the trace element whose bioavailability is most influenced by PA. Furthermore, several studies in humans as well as in monogastric animals clearly indicate an inhibition of non-haem iron absorption at marginal iron supply due to phytic acid. In fact PA seems to be, at least partly, responsible for the low absorption efficiency and high incidence of iron deficiency anaemia evident in most developing countries, where largely vegetarian diets are consumed Microbial phytases have provided a realistic means of improving mineral availability from traditionally high-phytate diets. In fact it has been consistently shown that Aspergillus phytases significantly enhance the absorption of calcium, magnesium and zinc in pigs and rats. Furthermore there are a few studies in humans indicating an improvement of iron bioavailability due to microbial phytase.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A fortified food that was rich in protein, vitamins and iron made of chickpea, bovine lung and corn was developed with the aim of controlling iron-deficiency anaemia in children from poorer areas. It was tested in Teresina, State of Piaui, Northeastern Brazil, on a population with high anaemia prevalence. Two local daycare units with similar characteristics were selected and the children at one of them received a 30 g pack three times a week, representing a total iron daily intake of 6.96 mg. The other daycare unit was followed as a control. The capillary haemoglobin concentration was determined for the children at both daycare units, at the beginning of the study and after a two-month intervention period. The mean haemoglobin concentration in the test group at the beginning of the intervention was 11.8 g/dL, which increased to 13.1 g/dL at the end of the intervention. In the control group these figures remained practically constant (11.6-11.8 g/dL). These represented a dramatic and significant drop in anaemia prevalence, from 61.5% to 11.5% in the test group, and an insignificant reduction (63.1-57.7%) in the control group. The acceptance of the fortified snack was excellent and no undesirable effects were observed. (C) 2007 Published by Elsevier Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Little is known concerning the effect of CO2 on phytoplankton ecophysiological processes under nutrient and trace element-limited conditions, because most CO2 manipulation experiments have been conducted under elements-replete conditions. To investigate the effects of CO2 and iron availability on phytoplankton ecophysiology, we conducted an experiment in September 2009 using a phytoplankton community in the iron limited, high-nutrient, low-chlorophyll (HNLC) region of the Bering Sea basin . Carbonate chemistry was controlled by the bubbling of the several levels of CO2 concentration (180, 380, 600, and 1000 ppm) controlled air, and two iron conditions were established, one with and one without the addition of inorganic iron. We demonstrated that in the iron-limited control conditions, the specific growth rate and the maximum photochemical quantum efficiency (Fv/Fm) of photosystem (PS) II decreased with increasing CO2 levels, suggesting a further decrease in iron bioavailability under the high-CO2 conditions. In addition, biogenic silica to particulate nitrogen and biogenic silica to particulate organic carbon ratios increased from 2.65 to 3.75 and 0.39 to 0.50, respectively, with an increase in the CO2 level in the iron-limited controls. By contrast, the specific growth rate, Fv/Fm values and elemental compositions in the iron-added treatments did not change in response to the CO2 variations, indicating that the addition of iron canceled out the effect of the modulation of iron bioavailability due to the change in carbonate chemistry. Our results suggest that high-CO2 conditions can alter the biogeochemical cycling of nutrients through decreasing iron bioavailability in the iron-limited HNLC regions in the future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho apresenta um método para reconhecimento do padrão na biodisponibilidade do ferro, através da interação com substâncias que auxiliam a absorção como vitamina C e vitamina A e nutrientes inibidores como cálcio, fitato, oxalato, tanino e cafeína. Os dados foram obtidos através de inquérito alimentar, almoço e jantar, em crianças de 2 a 5 anos da única Creche Municipal de Paraty-RJ entre 2007 e 2008. A Análise de Componentes Principais (ACP) foi aplicada na seleção dos nutrientes e utilizou-se o Algoritmo Fuzzy C-Means (FCM) para criar os agrupamentos classificados de acordo com a biodisponibilidade do ferro. Uma análise de sensibilidade foi desenvolvida na tentativa de buscar quantidades limítrofes de cálcio a serem consumidas nas refeições. A ACP mostrou que no almoço os nutrientes que explicavam melhor a variabilidade do modelo foram ferro, vitamina C, fitato e oxalato, enquanto no jantar o cálcio se mostrou eficaz na determinação da variabilidade do modelo devido ao elevado consumo de leite e derivados. Para o almoço, a aplicação do FCM na interação dos nutrientes, notou-se que a ingestão de vitamina C foi determinante na classificação dos grupos. No jantar, a classificação de grupos foi determinada pela quantidade de ferro heme na interação com o cálcio. Na análise de sensibilidade realizada no almoço e no jantar, duas iterações do algoritmo determinaram a interferência total do cálcio na biodisponibilidade do ferro.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Avaliou-se a biodisponibilidade de ferro de diferentes compostos visando sua utilização em dietas para leitões desmamados. Utilizaram-se 44 leitões (7 não-anêmicos e 37 anêmicos) desmamados aos 21 dias de idade (7,3 ± 1,8 kg) e distribuídos em dois grupos: grupo não-anêmico e grupo anêmico. Durante sete dias, os animais do grupo não-anêmico receberam dieta com FeSO4.7H2O (sulfato ferroso hepta-hidratado) na dose de 100 mg/kg e os do grupo anêmico, dieta sem ferro (<15 mg/kg ração). No sétimo dia, depois de determinada a concentração de hemoglobina sanguínea e diagnosticada a anemia, os leitões foram agrupados segundo o produto do peso (kg) × hemoglobina (g/dL) e alojados individualmente, durante 13 dias, em gaiolas para estudos de digestibilidade, onde foram alimentados com seis rações à base de milho e leite em pó: três rações-padrão com FeSO4.7H2O em quantidade equivalente a 80, 150 e 200 mg Fe/kg de ração; duas rações experimentais com ferro (150 mg/kg) na forma de FeSO4 microencapsulado com carboximetilcelulose ou de ferro quelado com metionina; e uma controle com ferro (100 mg/kg). O consumo de ração foi medido diariamente. Nos dias 0, 3, 6, 9 e 13 do período de repleção, os animais foram pesados para avaliação do desempenho e o sangue foi coletado para determinação da concentração de hemoglobina. Ao final do ensaio, os animais foram sacrificados e o fígado foi coletado para determinação das concentrações de ferro total, ferro heme e ferro não-heme. As concentrações hepáticas de ferro heme, ferro não-heme e ferro total não diferiram entre os animais, entretanto, os do grupo controle apresentaram excesso de ferro total no fígado, relacionado à dose de ferro injetada nos leitões após o desmame. em comparação ao FeSO4.7H2O não encapsulado, os compostos de ferro microencapsulado com carboximetilcelulose e de ferro quelado com metionina promovem melhor conversão alimentar em leitões desmamados.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The common bean (Phaseolus vulgaris L.), a staple food in nutritional diet of Brazilians and populations in developing countries, is a nutritionally rich legume with potential for biofortification. Approximately one third of the world population suffers from nutritional deficiencies, being necessary to increase the nutrient content in vegetables, especially iron (Fe), selenium (Se) and zinc (Zn), which are important micronutrients for plants and human health. In this context, three studies were carried out aiming to evaluate the potential of common bean cultivars to biofortification with Fe, Se and Zn, and verify the interaction between these minerals and iron bioavailability, in order to contribute to increased nutritional quality of grains, reducing the micronutrients deficiency and improving human health. In the first study, experiments were conducted in a greenhouse, with ten common bean cultivars in nutrient solution under different treatments with Fe, Se and Zn. The plant growth and the mineral content of the beans were evaluated in addition to verify the influence of polyphenol and phytate levels on Fe bioavailability in grains fortified with Zn and Se. The evaluated beans cultivars have proved promising for simultaneous biofortification with these nutrients without greatly affecting Fe bioavailability. In the second study, the aim was evaluate the interaction between Fe, Se and Zn in cultivars consumed in Brazil or in USA. Gene expression and root microscopy analysis were performed in order to understand the positive effect of Zn supply on the Fe uptake by roots. The expression of genes related to the transport and uptake of Fe and Zn did not clearly explain the influence of Zn in Fe nutrition. The roots microscopy and the evaluation of nutrient solutions used showed that, in the presence of Zn, there was Fe accumulation in epidermis of the roots and not in the vascular system, prone to be precipitated when it goes through the root membrane. In the latest study, a field experiment was conducted to evaluate the effect of Zn fertilization via soil and foliar, in the content and accumulation of Fe and Zn in grains and in the yield of common bean cultivars, in addition to verify the amount of these micronutrients supplied by biofortified beans. The fertilization with Zn did not affect the yield, but provided high levels of this nutrient in grains of the cultivars analyzed, representing 27% of the recommended daily intake of Zn. The higher Fe content in beans, obtained when there was no application of foliar Zn, supplies 56% of the daily requirement of Fe.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Malnutrition, as a global problem, is mainly caused by low level of mineral elements in staple food (deficient soil). Biofortification is based on selection of genotypes with enhanced concentration of mineral elements in grain, as well as decreased concentration of substances which interfere bioavailability of mineral elements in gut (like phytic acid), and increased content of substances that increase availability (such as β-carotene). The experiment with 51 maize ( Zea mays L.) inbred lines with different heterotic background was set up in order to evaluate chemical composition of grain and to determine the relations between phytic acid (PA), β-carotene, and mineral elements: Mg, Fe, Mn, and Zn. The highest average phytate, β-carotene, Fe, and Mn content was found in grain of inbreds from Lancaster heterotic group. The highest content of Mg was in grain of Independent source and Zn in grain of BSSS group. Increased level of Fe and Mn in Lancaster lines could be partially affected by higher PA content in grain, while increased β-carotene content could improve Mn and Zn availability from grain of BSSS genotypes and Mg availability from Lancaster inbreds. It is important to underline that PA reduction is followed by Zn content increase in grain of Lancaster heterotic group, as well as that variations in Mg, Fe, and Mn contents are independent on PA status in inbreds from Independent source, indicating that the genotypes with higher Mg, Fe and Mn status from this group could serve as favorable source for improved Mg, Fe, and Mn absorption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iron (Fe) is the fourth most abundant element in the Earth’s crust. Excess Fe mobilization from terrestrial into aquatic systems is of concern for deterioration of water quality via biofouling and nuisance algal blooms in coastal and marine systems. Substantial Fe dissolution and transport involve alternate Fe(II) oxidation followed by Fe(III) reduction, with a diversity of Bacteria and Archaea acting as the key catalyst. Microbially-mediated Fe cycling is of global significance with regard to cycles of carbon (C), sulfur (S) and manganese (Mn). However, knowledge regarding microbial Fe cycling in circumneutral-pH habitats that prevail on Earth has been lacking until recently. In particular, little is known regarding microbial function in Fe cycling and associated Fe mobilization and greenhouse (CO2 and CH4, GHG) evolution in subtropical Australian coastal systems where microbial response to ambient variations such as seasonal flooding and land use changes is of concern. Using the plantation-forested Poona Creek catchment on the Fraser Coast of Southeast Queensland (SEQ), this research aimed to 1) study Fe cycling-associated bacterial populations in diverse terrestrial and aquatic habitats of a representative subtropical coastal circumneutral-pH (4–7) ecosystem; and 2) assess potential impacts of Pinus plantation forestry practices on microbially-mediated Fe mobilization, organic C mineralization and associated GHG evolution in coastal SEQ. A combination of wet-chemical extraction, undisturbed core microcosm, laboratory bacterial cultivation, microscopy and 16S rRNA-based molecular phylogenetic techniques were employed. The study area consisted primarily of loamy sands, with low organic C and dissolved nutrients. Total reactive Fe was abundant and evenly distributed within soil 0–30 cm profiles. Organic complexation primarily controlled Fe bioavailability and forms in well-drained plantation soils and water-logged, native riparian soils, whereas tidal flushing exerted a strong “seawater effect” in estuarine locations and formed a large proportion of inorganic Fe(III) complexes. There was a lack of Fe(II) sources across the catchment terrestrial system. Mature, first-rotation plantation clear-felling and second-rotation replanting significantly decreased organic matter and poorly crystalline Fe in well-drained soils, although variations in labile soil organic C fractions (dissolved organic C, DOC; and microbial biomass C, MBC) were minor. Both well-drained plantation soils and water-logged, native-vegetation soils were inhabited by a variety of cultivable, chemotrophic bacterial populations capable of C, Fe, S and Mn metabolism via lithotrophic or heterotrophic, (micro)aerobic or anaerobic pathways. Neutrophilic Fe(III)-reducing bacteria (FeRB) were most abundant, followed by aerobic, heterotrophic bacteria (heterotrophic plate count, HPC). Despite an abundance of FeRB, cultivable Fe(II)-oxidizing bacteria (FeOB) were absent in associated soils. A lack of links between cultivable Fe, S or Mn bacterial densities and relevant chemical measurements (except for HPC correlated with DOC) was likely due to complex biogeochemical interactions. Neither did variations in cultivable bacterial densities correlate with plantation forestry practices, despite total cultivable bacterial densities being significantly lower in estuarine soils when compared with well-drained plantation soils and water-logged, riparian native-vegetation soils. Given that bacterial Fe(III) reduction is the primary mechanism of Fe oxide dissolution in soils upon saturation, associated Fe mobilization involved several abiotic and biological processes. Abiotic oxidation of dissolved Fe(II) by Mn appeared to control Fe transport and inhibit Fe dissolution from mature, first-rotation plantation soils post-saturation. Such an effect was not observed in clear-felled and replanted soils associated with low SOM and potentially low Mn reactivity. Associated GHG evolution post-saturation mainly involved variable CO2 emissions, with low, but consistently increasing CH4 effluxes in mature, first-rotation plantation soil only. In comparison, water-logged soils in the riparian native-vegetation buffer zone functioned as an important GHG source, with high potentials for Fe mobilization and GHG, particularly CH4 emissions in riparian loam soils associated with high clay and crystalline Fe fractions. Active Fe–C cycling was unlikely to occur in lower-catchment estuarine soils associated with low cultivable bacterial densities and GHG effluxes. As a key component of bacterial Fe cycling, neutrophilic FeOB widely occurred in diverse aquatic, but not terrestrial, habitats of the catchment study area. Stalked and sheathed FeOB resembling Gallionella and Leptothrix were limited to microbial mat material deposited in surface fresh waters associated with a circumneutral-pH seep, and clay-rich soil within riparian buffer zones. Unicellular, Sideroxydans-related FeOB (96% sequence identity) were ubiquitous in surface and subsurface freshwater environments, with highest abundance in estuary-adjacent shallow coastal groundwater water associated with redox transition. The abundance of dissolved C and Fe in the groundwater-dependent system was associated with high numbers of cultivable anaerobic, heterotrophic FeRB, microaerophilic, putatively lithotrophic FeOB and aerobic, heterotrophic bacteria. This research represents the first study of microbial Fe cycling in diverse circumneutral-pH environments (terrestrial–aquatic, freshwater–estuarine, surface–subsurface) of a subtropical coastal ecosystem. It also represents the first study of its kind in the southern hemisphere. This work highlights the significance of bacterial Fe(III) reduction in terrestrial, and bacterial Fe(II) oxidation in aquatic catchment Fe cycling. Results indicate the risk of promotion of Fe mobilization due to plantation clear-felling and replanting, and GHG emissions associated with seasonal water-logging. Additional significant outcomes were also achieved. The first direct evidence for multiple biomineralization patterns of neutrophilic, microaerophilic, unicellular FeOB was presented. A putatively pure culture, which represents the first cultivable neutrophilic FeOB from the southern hemisphere, was obtained as representative FeOB ubiquitous in diverse catchment aquatic habitats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein-energy malnutrition and mineral deficiencies are two of the three forms of nutritional deficiencies that affect most developing countries due to inadequate access to food and diets based on a sole crop. Common bean (Phaseolus vulgaris L.) is the staple crop of Nicaragua and it has the potential to improve the nutritional status of the poorest group of the nation. Its high content of both protein and nonhaem iron provides many nutrients, but inhibitors also may prevent absorption of iron and zinc by the human consumer. A proper production chain must be followed to ensure the best grain quality for the consumer. To achieve food security, both production and high nutritional content must be maintained. Four nationally important accessions of common bean, with different harvesting dates, were selected to be submitted to two treatments: to evaluate the impact of storage conditions on the end quality of the grain. The duration of the study was six months with sampling every six weeks, and the two treatments were controlled one stored at 40°C and 75 RH %, and the other was stored in in-situ conditions. Proximate and mineral composition was evaluated as well as tannin, phytate and bioavailability. Significant differences among different accessions were found, being the most significant in protein, Fe and Zn content, tannins and phytate. Protein values ranged from 21-23%. Iron content was 61-81 mg/kg but only 3-4% was bioavailable. Zinc content was 21-25 mg/kg and 10-12% was bioavailable. The concentration of phytate ranged from 8.6-9.6 mg/g while tannin values ranged within 37.7-43.8 mg/g. Storage at high temperatures was demonstrated to have an impact on certain nutritional compounds and proved detrimental to final grain quality. Soluble sugar content and tannin content decreased after six months in both storage conditions, IDF decreased in the in-situ and SDF in the stress. The iron content and bioavailability in INTA Biofortificado were not as outstanding as expected, so experiments should be conducted to compare its iron uptake and delivery with other cultivars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphorus fractionation was employed to find the bioavailability of phosphorus and its seasonal variations in the Panangad region of Cochin estuary, the largest estuarine system in the southwest coast of India. Sequential extraction of the surficial sediments using chelating agents was taken as a tool for this. Phosphate in the water column showed seasonal variations, with high values during the monsoon months, suggesting external runoff. Sediment texture was found to be the main factor influencing the spatial distribution of the geochemical parameters in the study region. Similarly, total phosphorus also showed granulometric dependence and it ranged between 319.54 and 2,938.83 μg/g. Calcium-bound fraction was the main phosphorus pool in the estuary. Significant spatial variations were observed for all bioavailable fractions; iron-bound inorganic phosphorus (5.04–474.24 μg/g), calcium-bound inorganic phosphorus (11.16–826.09 μg/g), and acidsoluble organic phosphorus (22.22–365.86 μg/g). Among the non-bioavailable phosphorus, alkalisoluble organic fraction was the major one (51.92– 1,002.45 μg/g). Residual organic phosphorus was K. R. Renjith (B) · N. Chandramohanakumar · M. M. Joseph Department of Chemical Oceanography, School of Marine Sciences, Cochin University of Science and Technology, Kochi 682016, Kerala, India e-mail: renjithaqua@gmail.com comparatively smaller fraction (3.25–14.64% of total). The sandy and muddy stations showed distinct fractional composition and the speciation study could endorse the overall geochemical character. There could be buffering of phosphorus, suggested by the increase in the percentage of bioavailable fractions during the lean premonsoon period, counteracting the decreases in the external loads. Principal component analysis was employed to find the possible processes influencing the speciation of phosphorus in the study region

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The uptake of arsenic (As) by plants from contaminated soils presents a health hazard that may affect the use of agricultural and former industrial land. Methods for limiting the hazard are desirable. A proposed remediation treatment comprises the precipitation of iron (Fe) oxides in the contaminated soil by adding ferrous sulfate and lime. The effects on As bioavailability were assessed using a range of vegetable crops grown in the field. Four UK locations were used, where soil was contaminated by As from different sources. At the most contaminated site, a clay loam containing a mean of 748 mg As kg(-1) soil, beetroot, calabrese, cauliflower, lettuce, potato, radish and spinach were grown. For all crops except spinach, ferrous sulfate treatment caused a significant reduction in the bioavailability of As in some part of the crop. Application of ferrous sulfate in solution, providing 0.2% Fe oxides in the soil (0-10 cm), reduced As uptake by a mean of 22%. Solid ferrous sulfate was applied to give concentrations of 0.5% and 1% Fe oxides: the 0.5% concentration reduced As uptake by a mean of 32% and the 1% concentration gave no significant additional benefit. On a sandy loam containing 65 mg As kg(-1) soil, there was tentative evidence that ferrous sulfate treatment up to 2% Fe oxides caused a significant reduction in lettuce As, but calabrese did not respond. At the other two sites, the effects of ferrous sulfate treatment were not significant, but the uptake of soil As was low in treated and untreated soils. Differences between sites in the bioavailable fraction of soil As may be related to the soil texture or the source of As. The highest bioavailability was found on the soil which had been contaminated by aerial deposition and had a high sand content. (C) 2003 Elsevier Science B.V. All rights reserved.