979 resultados para Ionic activity
Resumo:
The molar single ion activity coefficients associated with hydrogen, copper(II), cadmium(II) and lead(II) ions were determined at 25 degrees C and ionic strengths between 0.100 and 3.00 M (NaClO4), whereas for acetate the ionic strengths were fixed between 0.300 and 2.00 M, held with the same inert electrolyte. The investigation was carried out potentiometrically by using proton-sensitive glass, copper, cadmium and lead ion-selective electrodes and a second-class Hg\Hg-2(CH3COO)(2) electrode. It was found that the activity coefficients of these ions (y(i)) can be assessed through the following empirical equations:log y(H) = -0.542I(0.5) + 0.451I; log y(Cu) = -1.249I(0.5) + 0.912I; log y(Cd) = -0.829I(0.5) + 0.448I(1.5);log y(Pb) = -0.404I(0.5) + 0.117I(2); and log y(Ac) = 0.0370I .
Resumo:
Studies carried out with glass electrode in anhydrous ethanol and ethanol-water solutions for measuring pH values have shown that this parameter depends on the solution composition, the contact time with the solution, the utilized temperature, and the type of electrolyte used. It was also observed that the glass electrode behavior in an acid medium differs from an alkaline medium. These studies provided correction factors for pH values from 2 to 12, allowing the realization of proper measurements of the hydrogen ionic activity in the ethanol-water and anhydrous ethanol solutions. However, these correction factors could not be applied to the fuel ethanol. Alternatively, a new method was developed for the correction of the pH values, which can be applied in hydrous and anhydrous fuel ethanol samples. Copyright © 2011 by ASTM International.
Resumo:
Ordered mesoporous bioactive glasses (MBGs) with different compositions were prepared by using nonionic block copolymer surfactants as structure-directing agents through an evaporation-induced self-assembly process. Their in-vitro bioactivities were studied in detail by electron microscopy, Fourier-transform infrared spectroscopy, and inductively coupled plasma (ICP) atomic emission spectroscopy. The ICP element analysis results were further calculated in terms of the total consumption of Ca and P, Delta[Ca]/Delta[P] ratios, and ionic activity product (IP) of hydroxyapatite. Through the above analysis, it is clear that MBGs show a different structure-bioactivity correlation compared to conventional sol-gel-derivcd BGs. The in vitro bioactivity of MBGs is dependent on the Si/Ca ratio in the network when the other material parameters such as the mesostructure and texture properties (pore size, pore volume) are controlled. MBG 80S15C with relatively lower calcium content exhibits the best in vitro bioactivity, in contrast to conventional sol-gel-derived BGs where usually higher calcium percentage BGs (e.g. 60S35C) show better bioactivity. Calcination temperature is another important factor that influences the in vitro bioactivity. According to our results, MBGs calcined at 973 K may possess the best in vitro bioactivity. The influences of the composition and calcination temperature upon bioactivity are explained in terms of the unique structures of MBGs. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Lipase and surfactant together form a potent pair in various biotransformation, industrial application and biotechnological studies. The present investigation deals with changes in the activity, stability and structure of lipase from Rhizopus oryzae NRRL 3562 in presence of long chain ionic liquid-type imidazolium surfactant. Both the activity and stability were found to be enhanced in presence of the surfactant at low concentration (1-125 mu M) followed by inhibition at high concentration. The activity increased by 80% and thermal deactivation temperature raised by 2.5 degrees C. Investigations by ultraviolet-visible spectroscopy and circular dichroism revealed structural changes leading to rise in beta-sheet content and lowering of a-helix at low surfactant concentrations. Deactivation at high concentration correlated with greater structural changes depicted by spectroscopic studies. Isothermal titration calorimetric studies showed the binding to be spontaneous in nature involving non-covalent interactions. High negative value of entropy signifies exposure of hydrophobic domains and increase in structural rigidity, which correlates with active site being more accessible and rigid in presence of the surfactant. Application of these surfactants hold greater potential in the field of lipase based biotransformations, enzyme structural modifications and studies. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Stable gold nanoparticles with average size 1.7 nm synthesized by an amine-terminated ionic liquid showed enhanced electrocatalytic activity and high stability.
Resumo:
Free fatty acid receptors 2 and 3 (FFA2 and FFA3) are G protein-coupled receptors for short chain free fatty acids (SCFAs). They respond to the same set of endogenous ligands but with distinct rank-order of potency, such that acetate (C2) has been described as FFA2 selective while propionate (C3) is non-selective. Although C2 was confirmed to be selective for human FFA2 over FFA3, this ligand was not selective between the mouse orthologs. Moreover, although C3 was indeed not selective between the human orthologs it displayed clear selectivity for mouse FFA3 over mouse FFA2. This altered selectivity to C2 and C3 resulted from broad differences in SCFAs potency at the mouse orthologs. In studies to define the molecular basis for these observations marked variation in ligand-independent, constitutive activity was identified. The orthologs with higher potency for the SCFAs, human FFA2 and mouse FFA3, displayed high constitutive activity while the orthologs with lower potency for the agonist ligands, mouse FFA2 and human FFA3, did not. Sequence alignments of the 2nd extracellular loop identified single negatively charged residues in FFA2 and FFA3 not conserved between species and predicted to form ionic lock interactions with arginine residues within the FFA2 or FFA3 agonist binding pocket to regulate constitutive activity and SCFA potency. Reciprocal mutation of these residues between species orthologs resulted in the induction (or repression) of constitutive activity, and in most cases also yielded corresponding changes in SCFA potency.
Resumo:
Aiming at inexpensive Brønsted-acidic ionic liquids, suitable for industrial-scale catalysis, a family of protonic ionic liquids based on nitrogen bases and sulfuric acid has been developed. Variation of the molar ratio of sulfuric acid, χH2SO4, was used to tune acidity. The liquid structure was studied using 1H NMR and IR spectroscopies, revealing the existence of hydrogen-bonded clusters, [(HSO4)(H2SO4)]−, for χH2SO4 > 0.50. Acidity, quantified by Gutmann Acceptor Number (AN), was found to be closely related to the liquid structure. The ionic liquids were employed as acid catalysts in a model reaction; Fischer esterification of acetic acid with 1-butanol. The reaction rate depended on two factors; for χH2SO4 > 0.50, the key parameter was acidity (expressed as AN value), while for χH2SO4 > 0.50 it was the mass transport (solubility of starting materials in the ionic liquid phase). Building on this insight, the ionic liquid catalyst and reaction conditions have been chosen. Conversion values of over 95% were achieved under exceptionally mild conditions, and using an inexpensive ionic liquid, which could be recycled up to eight times without diminution in conversion or selectivity. It has been demonstrated how structural studies can underpin rational design and development of an ionic liquid catalyst, and in turn lead to a both greener and economically viable process.
Resumo:
A novel configuration for the in situ control of the catalytic activity of a polycrystalline Pt catalyst supported on a mixed ionic electronic conducting (MIEC) substrate is investigated. The modification of the catalytic activity is achieved by inducing the reverse spillover of oxygen promoting species from the support onto the catalyst surface, thus modifying the chemisorptive bond energy of the gas phase adsorbed reactants. This phenomenon is known as Electrochemical Promotion of Catalysis (EPOC). In this work we investigate the use of a wireless system that takes advantage of the mixed ionic electronic conductivity of the catalyst support (internally short-circuiting the system) in a dual chamber reactor. In this wireless configuration, the reaction takes place in one chamber of the membrane reactor while introduction of the promoting species is achieved by the use of an appropriate sweep gas (and therefore control of the oxygen chemical potential difference across the membrane) on the other chamber. Experimental results have shown that the catalytic rate can be enhanced by using an oxygen sweep, while a hydrogen sweep can reverse the changes. Total rate enhancement ratios of up to 3.5 were measured. © 2008 Elsevier B.V. All rights reserved.
Resumo:
Baeyer–Villiger oxidation of cyclic ketones, using H2O2 as the oxidising agent, was systematically studied using a range of metal chlorides in different solvents, and in neat chlorogallate(III) ionic liquids. The extremely high activity of GaCl3 in promoting oxidation with H2O2, irrespective of solvent, was reported for the first time. The activity of all other metal chlorides was strongly solvent-dependent. In particular, AlCl3 was very active in a protic solvent (ethanol), and tin chlorides, SnCl4 and SnCl2, were active in aprotic solvents (toluene and dioxane). In order to eliminate the need for volatile organic solvent, a Lewis acidic chlorogallate(III) ionic liquid was used in the place of GaCl3, which afforded typically 89–94% yields of lactones in 1–120 min, at ambient conditions. Raman and 71Ga NMR spectroscopic studies suggest that the active species, in both GaCl3 and chlorogallate(III) ionic liquid systems, are chlorohydroxygallate(III) anions, [GaCl3OH]−, which are the products of partial hydrolysis of GaCl3 and chlorogallate(III) anions; therefore, the presence of water is crucial.
Resumo:
The vapor liquid-equilibrium of water + ionic liquids is relevant for a wide range of applications of these compounds. It is usually measured by ebulliometric techniques, but these are time consuming and expensive. In this work it is shown that the activity coefficients of water in a series of cholinium-based ionic liquids can be reliably and quickly estimated at 298.15K using a humidity meter instrument. The cholinium based ionic liquids were chosen to test this experimental methodology since data for water activities of quaternary ammonium salts are available in the literature allowing the validation of the proposed technique. The COSMO-RS method provides a reliable description of the data and was also used to understand the molecular interactions occurring on these binary systems. The estimated excess enthalpies indicate that hydrogen bonding between water and ionic liquid anion is the dominant interaction that governs the behavior of water and cholinium-based ionic liquids systems, while the electrostatic-misfit and van der Walls forces have a minor contribution to the total excess enthalpies.
Resumo:
Ionic liquids (ILs) have attracted great attention, from both industry and academia, as alternative fluids for very different types of applications. The large number of cations and anions allow a wide range of physical and chemical characteristics to be designed. However, the exhaustive measurement of all these systems is impractical, thus requiring the use of a predictive model for their study. In this work, the predictive capability of the conductor-like screening model for real solvents (COSMO-RS), a model based on unimolecular quantum chemistry calculations, was evaluated for the prediction water activity coefficient at infinite dilution, gamma(infinity)(w), in several classes of ILs. A critical evaluation of the experimental and predicted data using COSMO-RS was carried out. The global average relative deviation was found to be 27.2%, indicating that the model presents a satisfactory prediction ability to estimate gamma(infinity)(w) in a broad range of ILs. The results also showed that the basicity of the ILs anions plays an important role in their interaction with water, and it considerably determines the enthalpic behavior of the binary mixtures composed by Its and water. Concerning the cation effect, it is possible to state that generally gamma(infinity)(w) increases with the cation size, but it is shown that the cation-anion interaction strength is also important and is strongly correlated to the anion ability to interact with water. The results here reported are relevant in the understanding of ILs-water interactions and the impact of the various structural features of its on the gamma(infinity)(w) as these allow the development of guidelines for the choice of the most suitable lLs with enhanced interaction with water.