997 resultados para Inverse modeling
Resumo:
This article proposes a more accurate approach to dopant extraction using combined inverse modeling and forward simulation of scanning capacitance microscopy (SCM) measurements on p-n junctions. The approach takes into account the essential physics of minority carrier response to the SCM probe tip in the presence of lateral electric fields due to a p-n junction. The effects of oxide fixed charge and interface state densities in the grown oxide layer on the p-n junction samples were considered in the proposed method. The extracted metallurgical and electrical junctions were compared to the apparent electrical junction obtained from SCM measurements. (C) 2002 American Institute of Physics.
Resumo:
A method for determining soil hydraulic properties of a weathered tropical soil (Oxisol) using a medium-sized column with undisturbed soil is presented. The method was used to determine fitting parameters of the water retention curve and hydraulic conductivity functions of a soil column in support of a pesticide leaching study. The soil column was extracted from a continuously-used research plot in Central Oahu (Hawaii, USA) and its internal structure was examined by computed tomography. The experiment was based on tension infiltration into the soil column with free outflow at the lower end. Water flow through the soil core was mathematically modeled using a computer code that numerically solves the one-dimensional Richards equation. Measured soil hydraulic parameters were used for direct simulation, and the retention and soil hydraulic parameters were estimated by inverse modeling. The inverse modeling produced very good agreement between model outputs and measured flux and pressure head data for the relatively homogeneous column. The moisture content at a given pressure from the retention curve measured directly in small soil samples was lower than that obtained through parameter optimization based on experiments using a medium-sized undisturbed soil column.
Resumo:
The requirement to forecast volcanic ash concentrations was amplified as a response to the 2010 Eyjafjallajökull eruption when ash safety limits for aviation were introduced in the European area. The ability to provide accurate quantitative forecasts relies to a large extent on the source term which is the emissions of ash as a function of time and height. This study presents source term estimations of the ash emissions from the Eyjafjallajökull eruption derived with an inversion algorithm which constrains modeled ash emissions with satellite observations of volcanic ash. The algorithm is tested with input from two different dispersion models, run on three different meteorological input data sets. The results are robust to which dispersion model and meteorological data are used. Modeled ash concentrations are compared quantitatively to independent measurements from three different research aircraft and one surface measurement station. These comparisons show that the models perform reasonably well in simulating the ash concentrations, and simulations using the source term obtained from the inversion are in overall better agreement with the observations (rank correlation = 0.55, Figure of Merit in Time (FMT) = 25–46%) than simulations using simplified source terms (rank correlation = 0.21, FMT = 20–35%). The vertical structures of the modeled ash clouds mostly agree with lidar observations, and the modeled ash particle size distributions agree reasonably well with observed size distributions. There are occasionally large differences between simulations but the model mean usually outperforms any individual model. The results emphasize the benefits of using an ensemble-based forecast for improved quantification of uncertainties in future ash crises.
Resumo:
The decomposition of soil organic matter (SOM) is temperature dependent, but its response to a future warmer climate remains equivocal. Enhanced rates of decomposition of SOM under increased global temperatures might cause higher CO2 emissions to the atmosphere, and could therefore constitute a strong positive feedback. The magnitude of this feedback however remains poorly understood, primarily because of the difficulty in quantifying the temperature sensitivity of stored, recalcitrant carbon that comprises the bulk (>90%) of SOM in most soils. In this study we investigated the effects of climatic conditions on soil carbon dynamics using the attenuation of the 14C ‘bomb’ pulse as recorded in selected modern European speleothems. These new data were combined with published results to further examine soil carbon dynamics, and to explore the sensitivity of labile and recalcitrant organic matter decomposition to different climatic conditions. Temporal changes in 14C activity inferred from each speleothem was modelled using a three pool soil carbon inverse model (applying a Monte Carlo method) to constrain soil carbon turnover rates at each site. Speleothems from sites that are characterised by semi-arid conditions, sparse vegetation, thin soil cover and high mean annual air temperatures (MAATs), exhibit weak attenuation of atmospheric 14C ‘bomb’ peak (a low damping effect, D in the range: 55–77%) and low modelled mean respired carbon ages (MRCA), indicating that decomposition is dominated by young, recently fixed soil carbon. By contrast, humid and high MAAT sites that are characterised by a thick soil cover and dense, well developed vegetation, display the highest damping effect (D = c. 90%), and the highest MRCA values (in the range from 350 ± 126 years to 571 ± 128 years). This suggests that carbon incorporated into these stalagmites originates predominantly from decomposition of old, recalcitrant organic matter. SOM turnover rates cannot be ascribed to a single climate variable, e.g. (MAAT) but instead reflect a complex interplay of climate (e.g. MAAT and moisture budget) and vegetation development.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
GPS multipath reflectometry (GPS-MR) is a technique that uses geodetic quality GPS receivers to estimate snow depth. The accuracy and precision of GPS-MR retrievals are evaluated at three different sites: grasslands, alpine, and forested. The assessment yields a correlation of 0.98 and an rms error of 6-8 cm for observed snow depths of up to 2.5 m. GPS-MR underestimates in situ snow depth by 10%-15% at these three sites, although the validation methods do not measure the same footprint as GPS-MR.
Resumo:
Inverse analysis for reactive transport of chlorides through concrete in the presence of electric field is presented. The model is solved using MATLAB’s built-in solvers “pdepe.m” and “ode15s.m”. The results from the model are compared with experimental measurements from accelerated migration test and a function representing the lack of fit is formed. This function is optimised with respect to varying amount of key parameters defining the model. Levenberg-Marquardt trust-region optimisation approach is employed. The paper presents a method by which the degree of inter-dependency between parameters and sensitivity (significance) of each parameter towards model predictions can be studied on models with or without clearly defined governing equations. Eigen value analysis of the Hessian matrix was employed to investigate and avoid over-parametrisation in inverse analysis. We investigated simultaneous fitting of parameters for diffusivity, chloride binding as defined by Freundlich isotherm (thermodynamic) and binding rate (kinetic parameter). Fitting of more than 2 parameters, simultaneously, demonstrates a high degree of parameter inter-dependency. This finding is significant as mathematical models for representing chloride transport rely on several parameters for each mode of transport (i.e., diffusivity, binding, etc.), which combined may lead to unreliable simultaneous estimation of parameters.
A new analysis of hydrographic data in the Atlantic and its application to an inverse modeling study
Resumo:
Scientific curiosity, exploration of georesources and environmental concerns are pushing the geoscientific research community toward subsurface investigations of ever-increasing complexity. This review explores various approaches to formulate and solve inverse problems in ways that effectively integrate geological concepts with geophysical and hydrogeological data. Modern geostatistical simulation algorithms can produce multiple subsurface realizations that are in agreement with conceptual geological models and statistical rock physics can be used to map these realizations into physical properties that are sensed by the geophysical or hydrogeological data. The inverse problem consists of finding one or an ensemble of such subsurface realizations that are in agreement with the data. The most general inversion frameworks are presently often computationally intractable when applied to large-scale problems and it is necessary to better understand the implications of simplifying (1) the conceptual geological model (e.g., using model compression); (2) the physical forward problem (e.g., using proxy models); and (3) the algorithm used to solve the inverse problem (e.g., Markov chain Monte Carlo or local optimization methods) to reach practical and robust solutions given today's computer resources and knowledge. We also highlight the need to not only use geophysical and hydrogeological data for parameter estimation purposes, but also to use them to falsify or corroborate alternative geological scenarios.
Resumo:
PECUBE is a three-dimensional thermal-kinematic code capable of solving the heat production-diffusion-advection equation under a temporally varying surface boundary condition. It was initially developed to assess the effects of time-varying surface topography (relief) on low-temperature thermochronological datasets. Thermochronometric ages are predicted by tracking the time-temperature histories of rock-particles ending up at the surface and by combining these with various age-prediction models. In the decade since its inception, the PECUBE code has been under continuous development as its use became wider and addressed different tectonic-geomorphic problems. This paper describes several major recent improvements in the code, including its integration with an inverse-modeling package based on the Neighborhood Algorithm, the incorporation of fault-controlled kinematics, several different ways to address topographic and drainage change through time, the ability to predict subsurface (tunnel or borehole) data, prediction of detrital thermochronology data and a method to compare these with observations, and the coupling with landscape-evolution (or surface-process) models. Each new development is described together with one or several applications, so that the reader and potential user can clearly assess and make use of the capabilities of PECUBE. We end with describing some developments that are currently underway or should take place in the foreseeable future. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Determination of reliable solute transport parameters is an essential aspect for the characterization of the mechanisms and processes involved in solute transport (e.g., pesticides, fertilizers, contaminants) through the unsaturated zone. A rapid inexpensive method to estimate the dispersivity parameter at the field scale is presented herein. It is based on the quantification by the X-ray fluorescence solid-state technique of total bromine in soil, along with an inverse numerical modeling approach. The results show that this methodology is a good alternative to the classic Br− determination in soil water by ion chromatography. A good agreement between the observed and simulated total soil Br is reported. The results highlight the potential applicability of both combined techniques to infer readily solute transport parameters under field conditions.
Resumo:
The asphalt concrete (AC) dynamic modulus (|E*|) is a key design parameter in mechanistic-based pavement design methodologies such as the American Association of State Highway and Transportation Officials (AASHTO) MEPDG/Pavement-ME Design. The objective of this feasibility study was to develop frameworks for predicting the AC |E*| master curve from falling weight deflectometer (FWD) deflection-time history data collected by the Iowa Department of Transportation (Iowa DOT). A neural networks (NN) methodology was developed based on a synthetically generated viscoelastic forward solutions database to predict AC relaxation modulus (E(t)) master curve coefficients from FWD deflection-time history data. According to the theory of viscoelasticity, if AC relaxation modulus, E(t), is known, |E*| can be calculated (and vice versa) through numerical inter-conversion procedures. Several case studies focusing on full-depth AC pavements were conducted to isolate potential backcalculation issues that are only related to the modulus master curve of the AC layer. For the proof-of-concept demonstration, a comprehensive full-depth AC analysis was carried out through 10,000 batch simulations using a viscoelastic forward analysis program. Anomalies were detected in the comprehensive raw synthetic database and were eliminated through imposition of certain constraints involving the sigmoid master curve coefficients. The surrogate forward modeling results showed that NNs are able to predict deflection-time histories from E(t) master curve coefficients and other layer properties very well. The NN inverse modeling results demonstrated the potential of NNs to backcalculate the E(t) master curve coefficients from single-drop FWD deflection-time history data, although the current prediction accuracies are not sufficient to recommend these models for practical implementation. Considering the complex nature of the problem investigated with many uncertainties involved, including the possible presence of dynamics during FWD testing (related to the presence and depth of stiff layer, inertial and wave propagation effects, etc.), the limitations of current FWD technology (integration errors, truncation issues, etc.), and the need for a rapid and simplified approach for routine implementation, future research recommendations have been provided making a strong case for an expanded research study.