905 resultados para Interval censoring
Resumo:
L'Anàlisi de la supervivència s'utilitza en diferents camps per analitzar el temps transcorregut entre dos esdeveniments. El que distingeix l'anàlisi de la supervivència d'altres àrees de l'estadística és que les dades normalment estan censurades. La censura en un interval apareix quan l'esdeveniment final d'interès no és directament observable i només se sap que el temps de fallada està en un interval concret. Un esquema de censura més complex encara apareix quan tant el temps inicial com el temps final estan censurats en un interval. Aquesta situació s'anomena doble censura. En aquest article donem una descripció formal d'un mètode bayesà paramètric per a l'anàlisi de dades censurades en un interval i dades doblement censurades així com unes indicacions clares de la seva utilització o pràctica. La metodologia proposada s'ilustra amb dades d'una cohort de pacients hemofílics que es varen infectar amb el virus VIH a principis dels anys 1980's.
Resumo:
This paper introduces a novel approach to making inference about the regression parameters in the accelerated failure time (AFT) model for current status and interval censored data. The estimator is constructed by inverting a Wald type test for testing a null proportional hazards model. A numerically efficient Markov chain Monte Carlo (MCMC) based resampling method is proposed to simultaneously obtain the point estimator and a consistent estimator of its variance-covariance matrix. We illustrate our approach with interval censored data sets from two clinical studies. Extensive numerical studies are conducted to evaluate the finite sample performance of the new estimators.
Resumo:
Interval-censored survival data, in which the event of interest is not observed exactly but is only known to occur within some time interval, occur very frequently. In some situations, event times might be censored into different, possibly overlapping intervals of variable widths; however, in other situations, information is available for all units at the same observed visit time. In the latter cases, interval-censored data are termed grouped survival data. Here we present alternative approaches for analyzing interval-censored data. We illustrate these techniques using a survival data set involving mango tree lifetimes. This study is an example of grouped survival data.
Resumo:
In this paper, we derive score test statistics to discriminate between proportional hazards and proportional odds models for grouped survival data. These models are embedded within a power family transformation in order to obtain the score tests. In simple cases, some small-sample results are obtained for the score statistics using Monte Carlo simulations. Score statistics have distributions well approximated by the chi-squared distribution. Real examples illustrate the proposed tests.
Resumo:
In this article, proportional hazards and logistic models for grouped survival data were extended to incorporate time-dependent covariates. The extension was motivated by a forestry experiment designed to compare five different water stresses in Eucalyptus grandis seedlings. The response was the seedling lifetime. The data set was grouped since there were just three occasions in which the seedlings was visited by the researcher. In each of these occasions also the shoot height was measured and therefore it is a time-dependent covariate. Both extended models were used in this example, and the results were very similar.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A method is given for proving efficiency of NPMLE directly linked to empirical process theory. The conditions in general are appropriate consistency of the NPMLE, differentiability of the model, differentiability of the parameter of interest, local convexity of the parameter space, and a Donsker class condition for the class of efficient influence functions obtained by varying the parameters. For the case that the model is linear in the parameter and the parameter space is convex, as with most nonparametric missing data models, we show that the method leads to an identity for the NPMLE which almost says that the NPMLE is efficient and provides us straightforwardly with a consistency and efficiency proof. This identify is extended to an almost linear class of models which contain biased sampling models. To illustrate, the method is applied to the univariate censoring model, random truncation models, interval censoring case I model, the class of parametric models and to a class of semiparametric models.
Resumo:
In interval-censored survival data, the event of interest is not observed exactly but is only known to occur within some time interval. Such data appear very frequently. In this paper, we are concerned only with parametric forms, and so a location-scale regression model based on the exponentiated Weibull distribution is proposed for modeling interval-censored data. We show that the proposed log-exponentiated Weibull regression model for interval-censored data represents a parametric family of models that include other regression models that are broadly used in lifetime data analysis. Assuming the use of interval-censored data, we employ a frequentist analysis, a jackknife estimator, a parametric bootstrap and a Bayesian analysis for the parameters of the proposed model. We derive the appropriate matrices for assessing local influences on the parameter estimates under different perturbation schemes and present some ways to assess global influences. Furthermore, for different parameter settings, sample sizes and censoring percentages, various simulations are performed; in addition, the empirical distribution of some modified residuals are displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended to a modified deviance residual in log-exponentiated Weibull regression models for interval-censored data. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This work develops a new methodology in order to discriminate models for interval-censored data based on bootstrap residual simulation by observing the deviance difference from one model in relation to another, according to Hinde (1992). Generally, this sort of data can generate a large number of tied observations and, in this case, survival time can be regarded as discrete. Therefore, the Cox proportional hazards model for grouped data (Prentice & Gloeckler, 1978) and the logistic model (Lawless, 1982) can befitted by means of generalized linear models. Whitehead (1989) considered censoring to be an indicative variable with a binomial distribution and fitted the Cox proportional hazards model using complementary log-log as a link function. In addition, a logistic model can be fitted using logit as a link function. The proposed methodology arises as an alternative to the score tests developed by Colosimo et al. (2000), where such models can be obtained for discrete binary data as particular cases from the Aranda-Ordaz distribution asymmetric family. These tests are thus developed with a basis on link functions to generate such a fit. The example that motivates this study was the dataset from an experiment carried out on a flax cultivar planted on four substrata susceptible to the pathogen Fusarium oxysoprum. The response variable, which is the time until blighting, was observed in intervals during 52 days. The results were compared with the model fit and the AIC values.
Resumo:
In biostatistical applications interest often focuses on the estimation of the distribution of a time-until-event variable T. If one observes whether or not T exceeds an observed monitoring time at a random number of monitoring times, then the data structure is called interval censored data. We extend this data structure by allowing the presence of a possibly time-dependent covariate process that is observed until end of follow up. If one only assumes that the censoring mechanism satisfies coarsening at random, then, by the curve of dimensionality, typically no regular estimators will exist. To fight the curse of dimensionality we follow the approach of Robins and Rotnitzky (1992) by modeling parameters of the censoring mechanism. We model the right-censoring mechanism by modeling the hazard of the follow up time, conditional on T and the covariate process. For the monitoring mechanism we avoid modeling the joint distribution of the monitoring times by only modeling a univariate hazard of the pooled monitoring times, conditional on the follow up time, T, and the covariates process, which can be estimated by treating the pooled sample of monitoring times as i.i.d. In particular, it is assumed that the monitoring times and the right-censoring times only depend on T through the observed covariate process. We introduce inverse probability of censoring weighted (IPCW) estimator of the distribution of T and of smooth functionals thereof which are guaranteed to be consistent and asymptotically normal if we have available correctly specified semiparametric models for the two hazards of the censoring process. Furthermore, given such correctly specified models for these hazards of the censoring process, we propose a one-step estimator which will improve on the IPCW estimator if we correctly specify a lower-dimensional working model for the conditional distribution of T, given the covariate process, that remains consistent and asymptotically normal if this latter working model is misspecified. It is shown that the one-step estimator is efficient if each subject is at most monitored once and the working model contains the truth. In general, it is shown that the one-step estimator optimally uses the surrogate information if the working model contains the truth. It is not optimal in using the interval information provided by the current status indicators at the monitoring times, but simulations in Peterson, van der Laan (1997) show that the efficiency loss is small.
Resumo:
In medical follow-up studies, ordered bivariate survival data are frequently encountered when bivariate failure events are used as the outcomes to identify the progression of a disease. In cancer studies interest could be focused on bivariate failure times, for example, time from birth to cancer onset and time from cancer onset to death. This paper considers a sampling scheme where the first failure event (cancer onset) is identified within a calendar time interval, the time of the initiating event (birth) can be retrospectively confirmed, and the occurrence of the second event (death) is observed sub ject to right censoring. To analyze this type of bivariate failure time data, it is important to recognize the presence of bias arising due to interval sampling. In this paper, nonparametric and semiparametric methods are developed to analyze the bivariate survival data with interval sampling under stationary and semi-stationary conditions. Numerical studies demonstrate the proposed estimating approaches perform well with practical sample sizes in different simulated models. We apply the proposed methods to SEER ovarian cancer registry data for illustration of the methods and theory.
Resumo:
There exist uniquely ergodic affine interval exchange transformations of [0,1] with flips which have wandering intervals and are such that the support of the invariant measure is a Cantor set.
Resumo:
In this study we have used fluorescence spectroscopy to determine the post-mortem interval. Conventional methods in forensic medicine involve tissue or body fluids sampling and laboratory tests, which are often time demanding and may depend on expensive analysis. The presented method consists in using time-dependent variations on the fluorescence spectrum and its correlation with the time elapsed after regular metabolic activity cessation. This new approach addresses unmet needs for post-mortem interval determination in forensic medicine, by providing rapid and in situ measurements that shows improved time resolution relative to existing methods. (C) 2009 Optical Society of America