792 resultados para Interoperable Home Energy Management Systems (HEMS)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the recent development of advanced metering infrastructure, real-time pricing (RTP) scheme is anticipated to be introduced in future retail electricity market. This paper proposes an algorithm for a home energy management scheduler (HEMS) to reduce the cost of energy consumption using RTP. The proposed algorithm works in three subsequent phases namely real-time monitoring (RTM), stochastic scheduling (STS) and real-time control (RTC). In RTM phase, characteristics of available controllable appliances are monitored in real-time and stored in HEMS. In STS phase, HEMS computes an optimal policy using stochastic dynamic programming (SDP) to select a set of appliances to be controlled with an objective of the total cost of energy consumption in a house. Finally, in RTC phase, HEMS initiates the control of the selected appliances. The proposed HEMS is unique as it intrinsically considers uncertainties in RTP and power consumption pattern of various appliances. In RTM phase, appliances are categorized according to their characteristics to ease the control process, thereby minimizing the number of control commands issued by HEMS. Simulation results validate the proposed method for HEMS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Part 7: Cyber-Physical Systems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to explore how the remote control of appliances/lights (active energy management system) affected household well-being, compared to in-home displays (passive energy management system). A six-week exploratory study was conducted with 14 participants divided into the following three groups: active; passive; and no equipment. The effect on well-being was measured through thematic analysis of two semi-structured interviews for each participant, administered at the start and end of the study. The well-being themes were based on existing measures of Satisfaction and Affect. The energy demand for each participant was also measured for two weeks without intervention, and then compared after four weeks with either the passive or active energy management systems. These measurements were used to complement the well-being analysis. Overall, the measure of Affect increased in the passive group but Satisfaction decreased; however, all three measures on average decreased in the active group. The measured energy demand also highlighted a disconnect between well-being and domestic energy consumption. The results point to a need for further investigation in this field; otherwise, there is a risk that nationally implemented energy management solutions may negatively affect our happiness and well-being. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the development and validation of a novel web-based interface for the gathering of feedback from building occupants about their environmental discomfort including signs of Sick Building Syndrome (SBS). The gathering of such feedback may enable better targeting of environmental discomfort down to the individual as well as the early detection and subsequently resolution by building services of more complex issues such as SBS. The occupant's discomfort is interpreted and converted to air-conditioning system set points using Fuzzy Logic. Experimental results from a multi-zone air-conditioning test rig have been included in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapid growth in the global population requires expansion of building stock, which in turn calls for increased energy demand. This demand varies in time and also between different buildings, yet, conventional methods are only able to provide mean energy levels per zone and are unable to capture this inhomogeneity, which is important to conserve energy. An additional challenge is that some of the attempts to conserve energy, through for example lowering of ventilation rates, have been shown to exacerbate another problem, which is unacceptable indoor air quality (IAQ). The rise of sensing technology over the past decade has shown potential to address both these issues simultaneously by providing high–resolution tempo–spatial data to systematically analyse the energy demand and its consumption as well as the impacts of measures taken to control energy consumption on IAQ. However, challenges remain in the development of affordable services for data analysis, deployment of large–scale real–time sensing network and responding through Building Energy Management Systems. This article presents the fundamental drivers behind the rise of sensing technology for the management of energy and IAQ in urban built environments, highlights major challenges for their large–scale deployment and identifies the research gaps that should be closed by future investigations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Smartcity Málaga project is one of Europe?s largest ecoefficient city initiatives. The project has implemented a field trial in 50 households to study the effects of energy monitoring and management technologies on the residential electricity consumption. This poster presents some lessons learned on energy consumption trends, smart clamps reliability and the suitability of power contracted by users, obtained after six months of data analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transportation Department, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a digital world, users’ Personally Identifiable Information (PII) is normally managed with a system called an Identity Management System (IMS). There are many types of IMSs. There are situations when two or more IMSs need to communicate with each other (such as when a service provider needs to obtain some identity information about a user from a trusted identity provider). There could be interoperability issues when communicating parties use different types of IMS. To facilitate interoperability between different IMSs, an Identity Meta System (IMetS) is normally used. An IMetS can, at least theoretically, join various types of IMSs to make them interoperable and give users the illusion that they are interacting with just one IMS. However, due to the complexity of an IMS, attempting to join various types of IMSs is a technically challenging task, let alone assessing how well an IMetS manages to integrate these IMSs. The first contribution of this thesis is the development of a generic IMS model called the Layered Identity Infrastructure Model (LIIM). Using this model, we develop a set of properties that an ideal IMetS should provide. This idealized form is then used as a benchmark to evaluate existing IMetSs. Different types of IMS provide varying levels of privacy protection support. Unfortunately, as observed by Jøsang et al (2007), there is insufficient privacy protection in many of the existing IMSs. In this thesis, we study and extend a type of privacy enhancing technology known as an Anonymous Credential System (ACS). In particular, we extend the ACS which is built on the cryptographic primitives proposed by Camenisch, Lysyanskaya, and Shoup. We call this system the Camenisch, Lysyanskaya, Shoup - Anonymous Credential System (CLS-ACS). The goal of CLS-ACS is to let users be as anonymous as possible. Unfortunately, CLS-ACS has problems, including (1) the concentration of power to a single entity - known as the Anonymity Revocation Manager (ARM) - who, if malicious, can trivially reveal a user’s PII (resulting in an illegal revocation of the user’s anonymity), and (2) poor performance due to the resource-intensive cryptographic operations required. The second and third contributions of this thesis are the proposal of two protocols that reduce the trust dependencies on the ARM during users’ anonymity revocation. Both protocols distribute trust from the ARM to a set of n referees (n > 1), resulting in a significant reduction of the probability of an anonymity revocation being performed illegally. The first protocol, called the User Centric Anonymity Revocation Protocol (UCARP), allows a user’s anonymity to be revoked in a user-centric manner (that is, the user is aware that his/her anonymity is about to be revoked). The second protocol, called the Anonymity Revocation Protocol with Re-encryption (ARPR), allows a user’s anonymity to be revoked by a service provider in an accountable manner (that is, there is a clear mechanism to determine which entity who can eventually learn - and possibly misuse - the identity of the user). The fourth contribution of this thesis is the proposal of a protocol called the Private Information Escrow bound to Multiple Conditions Protocol (PIEMCP). This protocol is designed to address the performance issue of CLS-ACS by applying the CLS-ACS in a federated single sign-on (FSSO) environment. Our analysis shows that PIEMCP can both reduce the amount of expensive modular exponentiation operations required and lower the risk of illegal revocation of users’ anonymity. Finally, the protocols proposed in this thesis are complex and need to be formally evaluated to ensure that their required security properties are satisfied. In this thesis, we use Coloured Petri nets (CPNs) and its corresponding state space analysis techniques. All of the protocols proposed in this thesis have been formally modeled and verified using these formal techniques. Therefore, the fifth contribution of this thesis is a demonstration of the applicability of CPN and its corresponding analysis techniques in modeling and verifying privacy enhancing protocols. To our knowledge, this is the first time that CPN has been comprehensively applied to model and verify privacy enhancing protocols. From our experience, we also propose several CPN modeling approaches, including complex cryptographic primitives (such as zero-knowledge proof protocol) modeling, attack parameterization, and others. The proposed approaches can be applied to other security protocols, not just privacy enhancing protocols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adjustable speed induction generators, especially the Doubly-Fed Induction Generators (DFIG) are becoming increasingly popular due to its various advantages over fixed speed generator systems. A DFIG in a wind turbine has ability to generate maximum power with varying rotational speed, ability to control active and reactive by integration of electronic power converters such as the back-to-back converter, low rotor power rating resulting in low cost converter components, etc, DFIG have become very popular in large wind power conversion systems. This chapter presents an extensive literature survey over the past 25 years on the different aspects of DFIG. Application of H8 Controller for enhanced DFIG-WT performance in terms of robust stability and reference tracking to reduce mechanical stress and vibrations is also demonstrated in the chapter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction of dynamic pricing in present retail market, considerably affects customers with an increased cost of energy consumption. Therefore, customers are enforced to control their loads according to price variation. This paper proposes a new technique of Home Energy Management, which helps customers to minimize their cost of energy consumption by appropriately controlling their loads. Thermostatically Controllable Appliances (TCAs) such as air conditioner and water heater are focused in this study, as they consume more than 50% of the total household energy consumption. The control process includes stochastic dynamic programming, which incorporated uncertainties in price and demand variation. It leads to an accurate selection of appliance settings. It is followed by a real time control of selected appliances with its optimal settings. Temperature set points of TCAs are adjusted based on price droop which is a reflection of actual cost of energy consumption. Customer satisfaction is maintained within limits using constraint optimization. It is showed that considerable energy savings is achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Buildings consume 40% of Ireland's total annual energy translating to 3.5 billion (2004). The EPBD directive (effective January 2003) places an onus on all member states to rate the energy performance of all buildings in excess of 50m2. Energy and environmental performance management systems for residential buildings do not exist and consist of an ad-hoc integration of wired building management systems and Monitoring & Targeting systems for non-residential buildings. These systems are unsophisticated and do not easily lend themselves to cost effective retrofit or integration with other enterprise management systems. It is commonly agreed that a 15-40% reduction of building energy consumption is achievable by efficiently operating buildings when compared with typical practice. Existing research has identified that the level of information available to Building Managers with existing Building Management Systems and Environmental Monitoring Systems (BMS/EMS) is insufficient to perform the required performance based building assessment. The cost of installing additional sensors and meters is extremely high, primarily due to the estimated cost of wiring and the needed labour. From this perspective wireless sensor technology provides the capability to provide reliable sensor data at the required temporal and spatial granularity associated with building energy management. In this paper, a wireless sensor network mote hardware design and implementation is presented for a building energy management application. Appropriate sensors were selected and interfaced with the developed system based on user requirements to meet both the building monitoring and metering requirements. Beside the sensing capability, actuation and interfacing to external meters/sensors are provided to perform different management control and data recording tasks associated with minimisation of energy consumption in the built environment and the development of appropriate Building information models(BIM)to enable the design and development of energy efficient spaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a hierarchical energy management system for multi-source multi-product (MSMP) microgrids. Traditional energy hub based scheduling method is combined with a hierarchical control structure to incorporate transient characteristics of natural gas flow and dynamics of energy converters in microgrids. The hierarchical EMS includes a supervisory control layer, an optimizing control layer, and an execution control layer. In order to efficiently accommodate the systems multi time-scale characteristics, the optimizing control layer is decomposed into three sub-layers: slow, medium and fast. Thermal, gas and electrical management systems are integrated into the slow, medium, and fast control layer, respectively. Compared with wind energy, solar energy is easier to integrate and more suitable for the microgrid environment, therefore, potential impacts of the hierarchical EMS on MSMP microgrids is investigated based on a building energy system integrating photovoltaic and microturbines. Numerical studies indicate that by using a hierarchical EMS, MSMP microgrids can be economically operated. Also, interactions among thermal, gas, and electrical system can be effectively managed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis to obtain the Master Degree in Electronics and Telecommunications Engineering