987 resultados para Interferon-gamma -- immunology
Resumo:
This study demonstrates that endogenously produced interferon gamma (IFN-gamma) forms the basis of a tumor surveillance system that controls development of both chemically induced and spontaneously arising tumors in mice. Compared with wild-type mice, mice lacking sensitivity to either IFN-gamma (i.e., IFN-gamma receptor-deficient mice) or all IFN family members (i.e., Stat1-deficient mice) developed tumors more rapidly and with greater frequency when challenged with different doses of the chemical carcinogen methylcholanthrene. In addition, IFN-gamma-insensitive mice developed tumors more rapidly than wild-type mice when bred onto a background deficient in the p53 tumor-suppressor gene. IFN-gamma-insensitive p53(-/-) mice also developed a broader spectrum of tumors compared with mice lacking p53 alone. Using tumor cells derived from methylcholanthrene-treated IFN-gamma-insensitive mice, we found IFN-gamma's actions to be mediated at least partly through its direct effects on the tumor cell leading to enhanced tumor cell immunogenicity. The importance and generality of this system is evidenced by the finding that certain types of human tumors become selectively unresponsive to IFN-gamma. Thus, IFN-gamma forms the basis of an extrinsic tumor-suppressor mechanism in immunocompetent hosts.
Resumo:
The authors developed a standardized approach for immune monitoring of antigen-specific CD8+ T cells within peripheral blood lymphocytes (PBLs) that combines direct ex vivo analysis of Melan-A/MART-1 and influenza-specific CD8+ T cells with HLA-A2/peptide multimers and interferon-gamma ELISPOT assays. Here the authors assessed the quality of results obtained with 180 PBLs from healthy donors and melanoma patients. Reproducibility of the multimer assay was good (average of 15% variation). In the absence of in vivo antigen-specific T-cell responses, physiologic fluctuations of multimer-positive T cells was low, with variation coefficients of 20% for Melan-A and 28% for influenza-specific T cells. In contrast, patients with vaccination-induced T-cell responses had significantly increased T-cell frequencies clearly exceeding physiologic fluctuations. Comparable results were obtained with ELISPOT assays. In conclusion, this approach is well suited to assess T-cell responses as biologic endpoints in clinical vaccine studies.
Resumo:
The immunosurveillance of transformed cells by the immune system remains one of the most controversial and poorly understood areas of immunity. Gene-targeted mice have greatly aided our understanding of the key effector molecules in tumor immunity. Herein, we describe spontaneous tumor development in gene-targeted mice lacking interferon (IFN)-gamma and/or perform (pfp), or the immunoregulatory cytokines, interleukin (IL)-12, IL-18, and tumor necrosis factor (TNF). Both IFN-gamma and pfp were critical for suppression of lymphomagenesis, however the level of protection afforded by IFN-gamma was strain specific. Lymphomas arising in IFN-gamma deficient mice were very nonimmunogenic compared with those derived from pfp-deficient mice, suggesting a comparatively weaker immunoselection pressure by IFN-gamma. Single loss of IL-12, IL-18, or TNF was not sufficient for spontaneous tumor development. A significant incidence of late onset adenocarcinoma observed in both IFN-gamma- and pfp-deficient mice indicated that some epithelial tissues were also subject to immunosurveillance.
Resumo:
Epithelial malignancies are common in immunosuppressed individuals and the general population. However the mechanisms by which the adaptive immune system can eliminate immunogenic epithelial cells remain undefined. The aim of this project was to determine the effector molecules required for induction of apoptosis in murine epidermal keratinocytes (MEKs) in vitro and in vivo. HPV16E7-specific CTL lines and T cell receptor transgenic (E7TCRtg) effector cells were obtained from wild type (wt)-C57 and syngeneic mice rendered functionally inactive for perforin (Pfp), interferon-g (IFN-g) or FasL. CTLs or E7TCRtg spleen cells were co-cultured with primary MEKs in vitro or transferred into skin graft recipients. Inhibition of colony formation and skin graft rejection were used as indicators of T cell:KC interaction. Wt E7-specific CTLs and CTLs deficient in perforin, FasL or IFN-g produced mean reductions in colony formation of 67% (62.4–71.3%), 72% (71.1–72%), 76% (73–78%) and 21.5% (14– 34%) respectively. Wt, perforin deficient or FasL deficient CTLs all induced rejection of skin grafts (wt: 6/12; Pfp: 9/15; FasL: 3/13 survival). Transfer and immunisation of wt E7TCRtg spleen cells induces rejection of 50% of grafts (4/8 survival). In contrast, perforin or IFN-g deficient E7TCRtg failed to induce graft rejection (5/6; 4/4 survival). FasL deficient E7TCRtg induced nonspecific rejection of grafts (E7- 2/6 survival; C57- 4/7 survival). Therefore IFN-g production by CTL is necessary and sufficient in vitro and in vivo to kill epithelial cells which express a nonself antigen. Assessment of immunotherapies directed against epithelial tissues may be more effectively achieved by assaying the amount of IFN-g production by CD8 T cells, and the number and affinity of those cells, in conjunction with quantitation of perforin mediated effects in short term assays.
Resumo:
Newly hatched chickens are highly susceptible to infection by opportunistic pathogens during the first 1 or 2 weeks of life, The use of cytokines as therapeutic agents has been studied in animal models as well as in immunosuppressed patients, This approach has become more feasible in livestock animals, in particular poultry, with the recent cloning of cytokine genes and the development of new technologies, such as live delivery vectors, We have recently cloned the gene for chicken interferon-gamma (Ch-IFN-gamma), Poly-HIS-tagged recombinant Ch-IFN-gamma was expressed in Escherichia coil, was purified by Ni chromatography, and was found to be stable at 4 degrees C and an ambient temperature for at least several months and Several weeks, respectively, Ch-IFN-gamma was capable of protecting chick fibroblasts from undergoing virus-mediated lysis, induced nitrite secretion from chicken macrophages in vitro, and enhanced MHC class II expression on macrophages, Administration of recombinant Ch-IFN-gamma to chickens resulted in enhanced weight gain over a 12-day period, Furthermore, the therapeutic potential of Ch-IFN-gamma was assessed using a coccidial challenge model, Birds were treated with Ch-IFN-gamma or a diluent control and then infected with Eimeria acervulina. Infected birds treated with Ch-IFN-gamma showed improved weight gain relative to noninfected birds, The ability of Ch-IFN-gamma to enhance weight gain in the face of coccidial infection makes it an excellent candidate as a therapeutic agent.
Resumo:
Human T-lymphotropic virus type 1 (HTLV-1) is the agent of the HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), which may Occur in > 5% of patients during their lifetime. HTLV-1-infection causes disturbances in the immune system, and the viral load may also play an important role in the pathogenesis of HAM/TSP. Some cytokines are involved in the pathogenesis of this disorder. We have determined IL-2, IL-4, IL-10, IL-12 p70, IFN-gamma and TNF-alpha production among HTLV-1-infected subjects from our HTLV-out Clinic in Institute of Infectious `Emilio Ribas` in Sao Paulo city, Brazil. PBMC obtained from healthy controls (n = 32), asymptomatic HTLV-1 carriers (n = 68) and HAM/TSP patients (n = 44) were grown in the absence and in the presence of phytohaemagglutinin (PHA), and the supernatants` fluids were measured for cytokines production. IL-2 levels were increased in the a-symptomatic HTLV-1 carriers, and IFN-gamma was increased in both groups of patients (asymptomatic HTLV-1 carriers and more significantly among HAM/TSP patients). IL-4, IL-10, TNF-alpha and IL-12 p70 levels were not significantly increased on both groups of patients, as compared with controls. The major finding Of this Study is that IFN-gamma was an important cytokine for the HAM/TSP pathogenesis. Therefore, immune modulation of IFN-gamma may be critical to treat of HAM/TSP patients.
Resumo:
Cytokines play important roles in the pathogenesis of lipodystrophy syndrome (LS). Single nucleotide polymorphisms (SNPs) at positions -607(C/A) and -137(C/G) in the promoter region of the interleukin-18 (IL-18) gene and at position +874(T/A) of the interferon-gamma (IFN-gamma) gene are related to the expression of these cytokines. To examine whether IL-18 and IFN-gamma polymorphisms are associated with LS, these SNPs were genotyped in 88 human immunodeficiency virus (HIV)-infected patients presenting LS, 79 HIV-infected without LS, and 133 healthy controls. The -607A allele, -607AA genotype, and -137G/-607A and -137C/-607A haplotypes in the IL-18 gene were over-represented in HIV patients presenting LS. The -137G/-607C haplotype was associated with protection against LS. These results indicate that the -607(C/A) SNP is associated with LS development in HIV-infected patients.
Resumo:
Background. Despite advances in immunosuppressive therapy in the past decade, allograft rejection remains an important cause of kidney graft failure. Cytokines play a major role in the inflammatory and immune responses that mediate allograft outcomes. Several studies have shown that the production of cytokines varies among individuals. These variations are determined by genetic polymorphisms, most commonly within the regulatory region of cytokine genes. The aim of the present study was to assess the effect of allelic variation on acute rejection episodes (ARE) or chronic allograft nephropathy (CAN) after kidney transplantation. Methods. To determine a possible correlation between the interferon (INF)-gamma +874 polymorphism and kidney allograft outcome, we isolated genomic DNA from 74 patients who underwent isolated kidney allografts and were classified into 2 groups-a rejection and a nonrejection group-for comparison with a control group of 163 healthy subjects. Results. We genotyped INF-gamma +874 polymorphisms in all groups. The transplant group showed a significantly increased homozygous genotype T/T (P = .0118) compared with healthy controls. Similarly, considering only patients with CAN, the homozygous genotype T/T (P = .0067) was significantly increased compared with the healthy controls. The rejection group indicated a significant increased homozygous genotype Tic compared with the control group (P = .0061). Conclusion. Homozygous genotype T/T was associated with increased levels of INF-gamma and greater numbers among the rejection and CAN cohorts.
Resumo:
Interferon-gamma (IFN-gamma) modulates the expression of Class II major histocompatibility antigens (MHC), thus providing a potential regulatory mechanism for local immune reactivity in the context of MHC-restricted antigen presentation. Within the central nervous system (CNS), the expression of MHC Class II antigens has been demonstrated on human reactive astrocytes and glioma cells. In order to investigate the modulation of HLA-DR on normal astrocytes, two cell lines were grown from a 20-week-old fetal brain. In situ none of the fetal brain cells expressed HLA-DR as determined by immunohistology on frozen tissue sections. The two cell lines, FB I and FB II, expressed GFAP indicating their astrocytic origin. FB I was HLA-DR negative at the first tissue culture passages, but could be induced to express HLA-DR when treated with 500 U/ml IFN-gamma. FB II was spontaneously HLA-DR positive in the early passages, lost the expression of this antigen after 11 passages and could also be induced to express HLA-DR by IFN-gamma. The induction of HLA-DR expression was demonstrated both by a binding RIA and by immunoprecipitation using a monoclonal antibody (MAB) directed against a monomorphic determinant of HLA-DR. The HLA-DR alloantigens were determined on FB II cells after IFN-gamma treatment, by immunofluorescence and by cytotoxicity assays, and were shown to be DR4, DR6, Drw52, DRw53 and DQwl. These results show that human fetal astrocytes can be induced to express HLA-DR by IFN-gamma in vitro and support the concept that astrocytes may function as antigen-presenting cells.
Resumo:
BACKGROUND AND OBJECTIVE: To assess if gestational factors affect the resistance of C57BL/6 mice to L major infection, this study determined the levels of IL-4 and IFN-gamma in popliteal lymph node cells of pregnant C57BL/6 mice infected with L. major at 16 hours, 5 days-, 10 days- and 15 days- post plug by PCR, ELISA and BIOASSAY. DESIGN/SETTING: Experimental. RESULTS: Infected pregnant C57BL/6 mice developed larger cutaneous footpad lesions compared with non-pregnant C57BL/6 mice (that showed signs of resolution 7-10 weeks after infection). But, the lesions in infected pregnant C57BL/6 mice and infected non-pregnant C57BL/6 mice were not as large as in susceptible BALB/c mice. The mean litter weight was also reduced in pregnant infected C57BL/6 mice particularly in the groups infected at later stages of pregnancy (day 10- and day 15-post plug). The levels of both IL-4 and IFN-gamma increased with gestation in pregnant infected C57BL/6 mice compared with pregnant non-infected group, while only IL-4 was raised in pregnant infected mice compared with infected non pregnant mice. CONCLUSIONS: It may be concluded that increased IL-4 in pregnant infected C57BL/6 mice caused the transient susceptibility to L major infection while reduced litter weight was associated with increased IFN-gamma. These effects were pronounced in C57BI/6 mice infected with L major in late pregnancy.
Resumo:
The human Me14-D12 antigen is a cell surface glycoprotein regulated by interferon-gamma (IFN-gamma) on tumor cell lines of neuroectodermal origin. It consists of two non-convalently linked subunits with apparent mol. wt sizes of 33,000 and 38,000. Here we describe the molecular cloning of a genomic probe for the Me14-D12 gene using the gene transfer approach. Mouse Ltk- cells were stably cotransfected with human genomic DNA and the Herpes Simplex virus thymidine kinase (TK) gene. Primary and secondary transfectants expressing the Me14-D12 antigen were isolated after selection in HAT medium by repeated sorting on a fluorescence activated cell sorter (FACS). A recombinant phage harboring a 14.3 kb insert of human DNA was isolated from a genomic library made from a positive secondary transfectant cell line. A specific probe derived from the phage DNA insert allowed the identification of two mRNAs of 3.5 kb and 2.2 kb in primary and secondary L cell transfectants, as well as in human melanoma cell lines expressing the Me14-D12 antigen. The regulation of Me14-D12 antigen by INF-gamma was retained in the L cell transfectants and could be detected both at the level of protein and mRNA expression.
Resumo:
The role of interferon-gamma in autoimmune diabetes was assessed by breeding a null mutation of the interferon-gamma receptor alpha chain into the nonobese diabetic mouse strain, as well as into a simplified T cell receptor transgenic model of diabetes. In contrast to a previous report on abrogation of the interferon-gamma gene, mutation of the gene encoding its receptor led to drastic effects on disease in both mouse lines. Nonobese diabetic mice showed a marked inhibition of insulitis-both the kinetics and penetrance-and no signs of diabetes; the transgenic model exhibited near-normal insulitis, but this never evolved into diabetes, either spontaneously or after experimental provocation. This failure could not be explained by perturbations in the ratio of T helper cell phenotypes; rather, it reflected a defect in antigen-presenting cells or in the islet beta cell targets.
Resumo:
The human melanoma-associated antigen identified by the monoclonal antibody (mAb) Me14-D12 is a cell surface protein whose expression is induced by interferon-gamma (IFN-gamma). We have recently reported the molecular cloning of a genomic probe specific for the gene and mRNA of this protein. By screening with the genomic probe, we have now isolated a full length 3.0 kb cDNA from a Raji cell line-derived lambda-gt10 library. Sequence analysis of this cDNA showed a 99.8% homology with the intercellular adhesion molecule-1 (ICAM-1). Mouse Ltk- cells stably transfected with the human cDNA clone were found to express the ICAM-1 antigenic determinants detected by mAb Me14-D12 and a reference anti-ICAM-1 mAb, as judged by surface immunofluorescence. Immunoprecipitation of surface-iodinated proteins with mAb Me14-D12 revealed the presence of a 90 kD molecule with identical mobility to ICAM-1. In addition, mAb Me14-D12 could inhibit the phorbolester-stimulated aggregation of U937 cells. The findings show that the human melanoma-associated Me14-D12 antigen is the adhesion molecule ICAM-1.
Resumo:
Interleukin-10 (IL-10) has been reported to inhibit nitric oxide (NO) synthesis and microbicidal activity of interferon-gamma (IFN-gamma)-stimulated macrophages (M phi) by preventing the secretion of tumor necrosis factor-alpha (TNF-alpha) which serves as an autocrine activating signal. We have examined the effects of recombinant IL-10 on the capacity of IFN-gamma together with exogenous TNF-alpha to induce NO synthesis by bone marrow-derived M phi. Under these conditions and in contrast to its reported deactivating potential, IL-10 strongly enhanced NO synthesis measured as nitrite (NO2-) release (half maximal stimulation at approximately 10 U/ml). IL-10 further increased NO2- production by M phi stimulated in the presence of optimal concentrations of prostaglandin E2, a positive modulator of M phi activation by IFN-gamma/TNF-alpha. Increased steady state levels of NO synthase mRNA were observed in 4-h IFN-gamma/TNF-alpha cultures and enhanced NO2(-)-release was evident 24 h but not 48 h after stimulation. These results suggest that the effects of IL-10 on M phi function are more complex than previously recognized.
Resumo:
Mice with homologous disruption of the gene coding for the ligand-binding chain of the interferon (IFN) gamma receptor and derived from a strain genetically resistant to infection with Leishmania major have been used to study further the role of this cytokine in the differentiation of functional CD4+ T cell subsets in vivo and resistance to infection. Wild-type 129/Sv/Ev mice are resistant to infection with this parasite, developing only small lesions, which resolve spontaneously within 6 wk. In contrast, mice lacking the IFN-gamma receptor develop large, progressing lesions. After infection, lymph nodes (LN) and spleens from both wild-type and knockout mice showed an expansion of CD4+ cells producing IFN-gamma as revealed by measuring IFN-gamma in supernatants of specifically stimulated CD4+ T cells, by enumerating IFN-gamma-producing T cells, and by Northern blot analysis of IFN-gamma transcripts. No biologically active interleukin (IL) 4 was detected in supernatants of in vitro-stimulated LN or spleen cells from infected wild-type or deficient mice. Reverse transcription polymerase chain reaction analysis with primers specific for IL-4 showed similar IL-4 message levels in LN from both types of mice. The IL-4 message levels observed were comparable to those found in similarly infected C57BL/6 mice and significantly lower than the levels found in BALB/c mice. Anti-IFN-gamma treatment of both types of mice failed to alter the pattern of cytokines produced after infection. These data show that even in the absence of IFN-gamma receptors, T helper cell (Th) 1-type responses still develop in genetically resistant mice with no evidence for the expansion of Th2 cells.