676 resultados para Interfacial nanoleakage


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective The objective was to examine the effect of a solvent dimethyl sulfoxide (DMSO) on resin-dentin bond durability, as well as potential functional mechanisms behind the effect. Methods Microtensile bond strength (μTBS) was evaluated in extracted human teeth in two separate experiments. Dentin specimens were acid-etched and assigned to pre-treatment with 0.5 mM (0.004%) DMSO as additional primer for 30 s and to controls with water pre-treatment. Two-step etch-and-rinse adhesive (Scotchbond 1XT, 3M ESPE) was applied and resin composite build-ups were created. Specimens were immediately tested for μTBS or stored in artificial saliva for 6 and 12 months prior to testing. Additional immediate and 6-month specimens were examined for interfacial nanoleakage analysis under SEM. Matrix metalloproteinase (MMP) inhibition by DMSO was examined with gelatin zymography. Demineralized dentin disks were incubated in 100% DMSO to observe the optical clearing effect. Results The use of 0.5 mM DMSO had no effect on immediate bond strength or nanoleakage. In controls, μTBS decreased significantly after storage, but increased significantly in DMSO-treated group. The control group had significantly lower μTBS than DMSO-group after 6 and 12 months. DMSO also eliminated the increase in nanoleakage seen in controls. 5% and higher DMSO concentrations significantly inhibited the gelatinases. DMSO induced optical clearing effect demonstrating collagen dissociation. Significance DMSO as a solvent may be useful in improving the preservation of long-term dentin-adhesive bond strength. The effect may relate to dentinal enzyme inhibition or improved wetting of collagen by adhesives. The collagen dissociation required much higher DMSO concentrations than the 0.5 mM DMSO used for bonding. © 2013 Academy of Dental Materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: To evaluate the efficacy of simplified dehydration protocols, in the absence of tubular occlusion, on bond strength and interfacial nanoleakage of a hydrophobic experimental adhesive blend to acid-etched, ethanol-dehydrated dentine immediately and after 6 months. Methods: Molars were randomly assigned to 6 treatment groups (n = 5). Under pulpal pressure simulation, dentine crowns were acid-etched with 35% H(3)PO(4) and rinsed with water. Adper Scotchbond Multi-Purpose was used for the control group. The remaining groups had their dentine surface dehydrated with ethanol solutions: group 1 = 50%, 70%, 80%, 95% and 3 x 100%, 30 s for each application; group 2 the same ethanol sequence with 15 s for each solution; groups 3, 4 and 5 used 100% ethanol only, applied in seven, three or one 30 s step, respectively. After dehydration, a primer (50% BisGMA + TEGDMA, 50% ethanol) was used, followed by the neat comonomer adhesive application. Resin composite build-ups were then prepared using an incremental technique. Specimens were stored for 24 h, sectioned into beams and stressed to failure after 24 h or after 6 months of artificial ageing. Interfacial silver leakage evaluation was performed for both storage periods (n = 5 per subgroup). Results: Group 1 showed higher bond strengths at 24 h or after 6 months of ageing (45.6 +/- 5.9(a)/43.1 +/- 3.2(a) MPa) and lower silver impregnation. Bond strength results were statistically similar to control group (41.2 +/- 3.3(ab)/38.3 +/- 4.0(ab) MPa), group 2 (40.0 +/- 3.1(ab)/38.6 +/- 3.2(ab) MPa), and group 3 at 24 h (35.5 +/- 4.3(ab) MPa). Groups 4 (34.6 +/- 5.7(bc)/25.9 +/- 4.1(c) MPa) and 5 (24.7 +/- 4.9(c)/18.2 +/- 4.2(c) MPa) resulted in lower bond strengths, extensive interfacial nanoleakage and more prominent reductions (up to 25%) in bond strengths after 6 months of ageing. Conclusions: Simplified dehydration protocols using one or three 100% ethanol applications should be avoided for the ethanol-wet bonding technique in the absence of tubular occlusion, as they showed decreased bond strength, more severe nanoleakage and reduced bond stability over time. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mass transfer across a gas-liquid interface was studied theoretically and experimentally, using transfer of oxygen into water as the gas-liquid system. The experimental results support the conclusions of a theoretical description of the concentration field that uses random square waves approximations. The effect of diffusion over the concentration records was quantified. It is shown that the peak of the normalized rills concentration fluctuation profiles must be lower than 0.5, and that the position of the peak of the rms value is an adequate measure of the thickness of the diffusive layer. The position of the peak is the boundary between the regions more subject to molecular diffusion or to turbulent transport of dissolved mass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dimerisation of leucine zippers results from the parallel association of alpha-helices to form a coiled coil. Coiled coils comprise a heptad repeat, denoted as (abcdefg)(n), where residues at positions a and d are hydrophobic and constitute the core of the dimer interface. Charged amino acids at the e and g positions of the coiled coil are thought to be the major influence on dimerisation specificity through the formation of attractive and repulsive interhelical electrostatic interactions. However, the variability of a-position residues in leucine zipper transcription factors prompted us to investigate their influence on dimerisation specificity. We demonstrate that mutation of a single interfacial a-position Ala residue to either Val, Ile or Leu significantly alters the homo- and heterodimerisation specificities of the leucine zipper domain from the c-Jun transcription factor. These results illustrate the importance of a-position residues in controlling leucine zipper dimerisation specificity in addition to providing substantial contributions to dimer stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the interfacial interactions and structure is important to better design and application of organic-inorganic nanohybrids. This paper presents our recent molecular dynamic studies on organoclays and polymer nanocomposites, including the layering behavior of organoclays, structural and dynamic properties of dioctadecyldimethyl ammoniums in organoclays, and interfacial interactions and structure of polyurethane nanocomposites. The results demonstrate that the layering behaviors of organoclays are closely related to the chain length of quaternary alkyl ammoniums and cation exchangeable capacity of clays. In addition to typical layered structures such as monolayer, bilayer and pseudo-trilayer, a pseudo-quadrilayer structure was also observed in organoclays modified with dioctadecyldimethyl ammoniums (DODDMA). In such a structure, alkyl chains do not lie flat within a single layer but interlace, and also jump to the next layer or even the next nearest layer. Moreover, the diffusion constants of nitrogen and methylene atoms increase with the temperature and methelene towards the tail groups. For polyurethane nanocomposite, the van der Waals interaction between apolar alkyl chains and soft segments of polyurethane predominates the interactions between organoclay and polyurethane. Different from most bulk polyurethane systems, there is no distinct phase-separated structure for the polyurethane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The aim of the study was to evaluate the radiopacity, solubility, flow, film thickness, setting time, and adaptation to the root canal walls of 3 epoxy resin based sealers: AH Plus, Acroseal, and Adseal. Methods: Physical tests were performed following American National Standards Institute/American Dental Association`s requirements. For interfacial adaptation analysis, 30 maxillary canines were shaped by using Pro Taper instruments. The specimens were divided into 3 groups (n = 10): group 1, AH Plus; group 2, Acroseal; and group 3, Adseal. The sealers were mixed with rhodamine B dye, and the canals were filled by using the lateral compaction technique. The percentage of gaps and voids area was calculated at 2, 4, and 6 mm levels from the apex. Statistical evaluation was performed by using analysis of variance for physical analysis and nonparametric Kruskal-Wallis and Dunn tests for interfacial adaptation (P<.05). Results: No statistical differences were found for adaptation, percentage of voids, solubility, flow, and film thickness among the sealers (P>.05). AH Plus was significantly more radiopaque (P<.05). For the setting time, there were statistical differences among all the studied sealers (P<.05). Conclusions: AH Plus, Acroseal, and Adseal presented similar root canal adaptation, solubility, flow, and film thickness. Statistical differences were found for radiopacity and setting time (P<.05). (J Endod 2011;37:1417-1421)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To evaluate the bonding interface in experimentally weakened roots reinforced with adhesive restorative materials and quartz fibre posts, varying the light-exposure time of the composite resin used for root reinforcement. Methods: Twelve extracted human maxillary incisors teeth were used. The crowns were removed and the roots were endodontically treated. After post space preparation, the roots were assigned to four groups. The thickness of the root dentine was reduced and adhesively restored with composite resin light-activated through a translucent fibre post for either 40 s (group 1), 80 s (group 2) or 120 s (group 3). In the case of control (group 4), the roots were not weakened. One day after post cementation, the specimens were sectioned transversally in three slices and processed for scanning electron microscopic analysis to observe bonding interface formation, quality of the hybrid layer and density of resin tags using a four-step scale method. Results: Formation of a hybrid layer and resin tags were evident in all groups. There was no statistically (p > 0.05) significant difference between the regions analysed in each group (Friedman test) and between groups in each section depth (Kruskal-Wallis test). Furthermore, comparison of the flared/reinforced groups showed that the different time;; used for composite resin cure did not affect the results significantly (Kruskal-Wallis test, p = 0.2139). Conclusions: Different light-exposure times used for composite resin polymerisation during root canal reinforcement did not affect significantly the formation and quality of the dentine/adhesive/composite resin bonding interface. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado em Engenharia Química. Ramo de Optimização Energética na Indústria Química

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Externally bonded strengthening of masonry structures using Fiber Reinforced Polymers (FRPs) has been accepted as a promising technique. Although the effectiveness of FRPs in improving the performance of masonry components has been extensively investigated, their long-term performance and durability remain poorly addressed. This paper, tackling one of the aspects related to durability of these systems, presents an experimental investigation on the effect of long-term (one year) water immersion on the performance of GFRP-strengthened bricks. The tests include materials' mechanical tests, as well as pull-off and single-lap shear bond tests, to investigate the changes in material properties and bond behavior with immersion time, respectively. The effect of mechanical surface treatment on the durability of the strengthened system as well as the reversibility of the degradation upon partial drying are also investigated. The experimental results are presented and critically discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classical description of Si oxidation given by Deal and Grove has well-known limitations for thin oxides (below 200 Ã). Among the large number of alternative models published so far, the interfacial emission model has shown the greatest ability to fit the experimental oxidation curves. It relies on the assumption that during oxidation Si interstitials are emitted to the oxide to release strain and that the accumulation of these interstitials near the interface reduces the reaction rate there. The resulting set of differential equations makes it possible to model diverse oxidation experiments. In this paper, we have compared its predictions with two sets of experiments: (1) the pressure dependence for subatmospheric oxygen pressure and (2) the enhancement of the oxidation rate after annealing in inert atmosphere. The result is not satisfactory and raises serious doubts about the model’s correctness

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We perform direct numerical simulations of drainage by solving Navier- Stokes equations in the pore space and employing the Volume Of Fluid (VOF) method to track the evolution of the fluid-fluid interface. After demonstrating that the method is able to deal with large viscosity contrasts and to model the transition from stable flow to viscous fingering, we focus on the definition of macroscopic capillary pressure. When the fluids are at rest, the difference between inlet and outlet pressures and the difference between the intrinsic phase average pressure coincide with the capillary pressure. However, when the fluids are in motion these quantities are dominated by viscous forces. In this case, only a definition based on the variation of the interfacial energy provides an accurate measure of the macroscopic capillary pressure and allows separating the viscous from the capillary pressure components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the growth of interfaces in driven diffusive systems well below the critical temperature by means of Monte Carlo simulations. We consider the region beyond the linear regime and of large values of the external field which has not been explored before. The simulations support the existence of interfacial traveling waves when asymmetry is introduced in the model, a result previously predicted by a linear-stability analysis. Furthermore, the generalization of the Gibbs-Thomson relation is discussed. The results provide evidence that the external field is a stabilizing effect which can be considered as effectively increasing the surface tension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics of an interface separating the two coexistent phases of a binary system in the presence of external fluctuations in temperature is studied. An interfacial instability is obtained for an interface that would be stable in the absence of fluctuations or in the presence of internal fluctuations. Analytical stability analysis and numerical simulations are in accordance with an explanation of these effects in terms of a quenchlike instability induced by fluctuations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a systematic method to derive all orders of mode couplings in a weakly nonlinear approach to the dynamics of the interface between two immiscible viscous fluids in a Hele-Shaw cell. The method is completely general: it applies to arbitrary geometry and driving. Here we apply it to the channel geometry driven by gravity and pressure. The finite radius of convergence of the mode-coupling expansion is found. Calculation up to third-order couplings is done, which is necessary to account for the time-dependent Saffman-Taylor finger solution and the case of zero viscosity contrast. The explicit results provide relevant analytical information about the role that the viscosity contrast and the surface tension play in the dynamics of the system. We finally check the quantitative validity of different orders of approximation and a resummation scheme against a physically relevant, exact time-dependent solution. The agreement between the low-order approximations and the exact solution is excellent within the radius of convergence, and is even reasonably good beyond this radius.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the dynamic velocity profiles of a Newtonian fluid (glycerol) and a viscoelastic Maxwell fluid (CPyCl-NaSal in water) driven by an oscillating pressure gradient in a vertical cylindrical pipe. The frequency range explored has been chosen to include the first three resonance peaks of the dynamic permeability of the viscoelastic-fluid¿pipe system. Three different optical measurement techniques have been employed. Laser Doppler anemometry has been used to measure the magnitude of the velocity at the center of the liquid column. Particle image velocimetry and optical deflectometry are used to determine the velocity profiles at the bulk of the liquid column and at the liquid-air interface respectively. The velocity measurements in the bulk are in good agreement with the theoretical predictions of a linear theory. The results, however, show dramatic differences in the dynamic behavior of Newtonian and viscoelastic fluids, and demonstrate the importance of resonance phenomena in viscoelastic fluid flows, biofluids in particular, in confined geometries.