899 resultados para Interconnected microgrids


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper shows how multiple interconnected microgrids can operate in autonomous mode in a self–healing medium voltage network. This is possible if based on network self– healing capability, the neighbour microgrids are interconnected and a surplus generation capacity is available in some of the Distributed Energy Resources (DERs) of the interconnected microgrids. This will reduce or prevent load shedding within the microgrids with less generation capacity. Therefore, DERs in a microgrid are controlled such that they share the local load within that microgrid as well as the loads in other interconnected microgrids. Different control algorithms are proposed to manage the DERs at different operating conditions. On the other hand, a Distribution Static Compensator (DSTATCOM) is employed to regulate the voltage. The efficacy of the proposed power control, sharing and management among DERs in multiple interconnected microgrids is validated through extensive simulation studies using PSCAD/EMTDC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to minimize the number of load shedding in a Microgrid during autonomous operation, islanded neighbour microgrids can be interconnected if they are on a self-healing network and an extra generation capacity is available in Distributed Energy Resources (DER) in one of the microgrids. In this way, the total load in the system of interconnected microgrids can be shared by all the DERs within these microgrids. However, for this purpose, carefully designed self-healing and supply restoration control algorithm, protection systems and communication infrastructure are required at the network and microgrid levels. In this chapter, first a hierarchical control structure is discussed for interconnecting the neighbour autonomous microgrids where the introduced primary control level is the main focus. Through the developed primary control level, it demonstrates how the parallel DERs in the system of multiple interconnected autonomous microgrids can properly share the load in the system. This controller is designed such that the converter-interfaced DERs operate in a voltage-controlled mode following a decentralized power sharing algorithm based on droop control. The switching in the converters is controlled using a linear quadratic regulator based state feedback which is more stable than conventional proportional integrator controllers and this prevents instability among parallel DERs when two microgrids are interconnected. The efficacy of the primary control level of DERs in the system of multiple interconnected autonomous microgrids is validated through simulations considering detailed dynamic models of DERs and converters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To minimise the number of load sheddings in a microgrid (MG) during autonomous operation, islanded neighbour MGs can be interconnected if they are on a self-healing network and an extra generation capacity is available in the distributed energy resources (DER) of one of the MGs. In this way, the total load in the system of interconnected MGs can be shared by all the DERs within those MGs. However, for this purpose, carefully designed self-healing and supply restoration control algorithm, protection systems and communication infrastructure are required at the network and MG levels. In this study, first, a hierarchical control structure is discussed for interconnecting the neighbour autonomous MGs where the introduced primary control level is the main focus of this study. Through the developed primary control level, this study demonstrates how the parallel DERs in the system of multiple interconnected autonomous MGs can properly share the load of the system. This controller is designed such that the converter-interfaced DERs operate in a voltage-controlled mode following a decentralised power sharing algorithm based on droop control. DER converters are controlled based on a per-phase technique instead of a conventional direct-quadratic transformation technique. In addition, linear quadratic regulator-based state feedback controllers, which are more stable than conventional proportional integrator controllers, are utilised to prevent instability and weak dynamic performances of the DERs when autonomous MGs are interconnected. The efficacy of the primary control level of the DERs in the system of multiple interconnected autonomous MGs is validated through the PSCAD/EMTDC simulations considering detailed dynamic models of DERs and converters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The search for new energy models arises as a necessity to have a sustainable power supply. The inclusion of distributed generation sources (DG) allows to reduce the cost of facilities, increase the security of the grid or alleviate problems of congestion through the redistribution of power flows. In remote microgrids it is needed in a particular way a safe and reliable supply, which can cover the demand for a low cost; due to this, distributed generation is an alternative that is being widely introduced in these grids. But the remote microgrids are especially weak grids because of their small size, low voltage level, reduced network mesh and distribution lines with a high ratio R/X. This ratio affects the coupling between grid voltages and phase shifts, and stability becomes an issue of greater importance than in interconnected systems. To ensure the appropriate behavior of generation sources inserted in remote microgrids -and, in general, any electrical equipment-, it is essential to have devices for testing and certification. These devices must, not only faithfully reproduce disturbances occurring in remote microgrids, but also to behave against the equipment under test (EUT) as a real weak grid. This also makes the device commercially competitive. To meet these objectives and based on the aforementioned, it has been designed, built and tested a voltage disturbances generator, in order to provide a simple, versatile, full and easily scalable device to manufacturers and laboratories in the sector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

World economies increasingly demand reliable and economical power supply and distribution. To achieve this aim the majority of power systems are becoming interconnected, with several power utilities supplying the one large network. One problem that occurs in a large interconnected power system is the regular occurrence of system disturbances which can result in the creation of intra-area oscillating modes. These modes can be regarded as the transient responses of the power system to excitation, which are generally characterised as decaying sinusoids. For a power system operating ideally these transient responses would ideally would have a “ring-down” time of 10-15 seconds. Sometimes equipment failures disturb the ideal operation of power systems and oscillating modes with ring-down times greater than 15 seconds arise. The larger settling times associated with such “poorly damped” modes cause substantial power flows between generation nodes, resulting in significant physical stresses on the power distribution system. If these modes are not just poorly damped but “negatively damped”, catastrophic failures of the system can occur. To ensure system stability and security of large power systems, the potentially dangerous oscillating modes generated from disturbances (such as equipment failure) must be quickly identified. The power utility must then apply appropriate damping control strategies. In power system monitoring there exist two facets of critical interest. The first is the estimation of modal parameters for a power system in normal, stable, operation. The second is the rapid detection of any substantial changes to this normal, stable operation (because of equipment breakdown for example). Most work to date has concentrated on the first of these two facets, i.e. on modal parameter estimation. Numerous modal parameter estimation techniques have been proposed and implemented, but all have limitations [1-13]. One of the key limitations of all existing parameter estimation methods is the fact that they require very long data records to provide accurate parameter estimates. This is a particularly significant problem after a sudden detrimental change in damping. One simply cannot afford to wait long enough to collect the large amounts of data required for existing parameter estimators. Motivated by this gap in the current body of knowledge and practice, the research reported in this thesis focuses heavily on rapid detection of changes (i.e. on the second facet mentioned above). This thesis reports on a number of new algorithms which can rapidly flag whether or not there has been a detrimental change to a stable operating system. It will be seen that the new algorithms enable sudden modal changes to be detected within quite short time frames (typically about 1 minute), using data from power systems in normal operation. The new methods reported in this thesis are summarised below. The Energy Based Detector (EBD): The rationale for this method is that the modal disturbance energy is greater for lightly damped modes than it is for heavily damped modes (because the latter decay more rapidly). Sudden changes in modal energy, then, imply sudden changes in modal damping. Because the method relies on data from power systems in normal operation, the modal disturbances are random. Accordingly, the disturbance energy is modelled as a random process (with the parameters of the model being determined from the power system under consideration). A threshold is then set based on the statistical model. The energy method is very simple to implement and is computationally efficient. It is, however, only able to determine whether or not a sudden modal deterioration has occurred; it cannot identify which mode has deteriorated. For this reason the method is particularly well suited to smaller interconnected power systems that involve only a single mode. Optimal Individual Mode Detector (OIMD): As discussed in the previous paragraph, the energy detector can only determine whether or not a change has occurred; it cannot flag which mode is responsible for the deterioration. The OIMD seeks to address this shortcoming. It uses optimal detection theory to test for sudden changes in individual modes. In practice, one can have an OIMD operating for all modes within a system, so that changes in any of the modes can be detected. Like the energy detector, the OIMD is based on a statistical model and a subsequently derived threshold test. The Kalman Innovation Detector (KID): This detector is an alternative to the OIMD. Unlike the OIMD, however, it does not explicitly monitor individual modes. Rather it relies on a key property of a Kalman filter, namely that the Kalman innovation (the difference between the estimated and observed outputs) is white as long as the Kalman filter model is valid. A Kalman filter model is set to represent a particular power system. If some event in the power system (such as equipment failure) causes a sudden change to the power system, the Kalman model will no longer be valid and the innovation will no longer be white. Furthermore, if there is a detrimental system change, the innovation spectrum will display strong peaks in the spectrum at frequency locations associated with changes. Hence the innovation spectrum can be monitored to both set-off an “alarm” when a change occurs and to identify which modal frequency has given rise to the change. The threshold for alarming is based on the simple Chi-Squared PDF for a normalised white noise spectrum [14, 15]. While the method can identify the mode which has deteriorated, it does not necessarily indicate whether there has been a frequency or damping change. The PPM discussed next can monitor frequency changes and so can provide some discrimination in this regard. The Polynomial Phase Method (PPM): In [16] the cubic phase (CP) function was introduced as a tool for revealing frequency related spectral changes. This thesis extends the cubic phase function to a generalised class of polynomial phase functions which can reveal frequency related spectral changes in power systems. A statistical analysis of the technique is performed. When applied to power system analysis, the PPM can provide knowledge of sudden shifts in frequency through both the new frequency estimate and the polynomial phase coefficient information. This knowledge can be then cross-referenced with other detection methods to provide improved detection benchmarks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a comprehensive approach to the planning of distribution networks and the control of microgrids. Firstly, a Modified Discrete Particle Swarm Optimization (MDPSO) method is used to optimally plan a distribution system upgrade over a 20 year planning period. The optimization is conducted at different load levels according to the anticipated load duration curve and integrated over the system lifetime in order to minimize its total lifetime cost. Since the optimal solution contains Distributed Generators (DGs) to maximize reliability, the DG must be able to operate in islanded mode and this leads to the concept of microgrids. Thus the second part of the paper reviews some of the challenges of microgrid control in the presence of both inertial (rotating direct connected) and non-inertial (converter interfaced) DGs. More specifically enhanced control strategies based on frequency droop are proposed for DGs to improve the smooth synchronization and real power sharing minimizing transient oscillations in the microgrid. Simulation studies are presented to show the effectiveness of the control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A microgrid provides economical and reliable power to customers by integrating distributed resources more effectively. Islanded operation enables a continuous power supply for loads during a major grid disturbance. Reliability of a microgrid can be further increased by forming a mesh configuration. However, the protection of mesh microgrids is a challenging task. In this paper, protection schemes are discussed using current differential protection of a microgrid. The protection challenges associated with bi-directional power flow, meshed configuration, changing fault current level due to intermittent nature of DGs and reduced fault current level in an islanded mode are considered in proposing the protection solutions. Relay setting criterion and current transformer (CT) selection guidelines are also discussed. The results are verified using MATLAB calculations and PSCAD simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper present an efficient method using system state sampling technique in Monte Carlo simulation for reliability evaluation of multi-area power systems, at Hierarchical Level One (HLI). System state sampling is one of the common methods used in Monte Carlo simulation. The cpu time and memory requirement can be a problem, using this method. Combination of analytical and Monte Carlo method known as Hybrid method, as presented in this paper, can enhance the efficiency of the solution. Incorporation of load model in this study can be utilised either by sampling or enumeration. Both cases are examined in this paper, by application of the methods on Roy Billinton Test System(RBTS).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scaffolding is an essential issue in tissue engineering and scaffolds should answer certain essential criteria: biocompatibility, high porosity, and important pore interconnectivity to facilitate cell migration and fluid diffusion. In this work, a modified solvent castingparticulate leaching out method is presented to produce scaffolds with spherical and interconnected pores. Sugar particles (200–300 lm and 300–500 lm) were poured through a horizontal Meker burner flame and collected below the flame. While crossing the high temperature zone, the particles melted and adopted a spherical shape. Spherical particles were compressed in plastic mold. Then, poly-L-lactic acid solution was cast in the sugar assembly. After solvent evaporation, the sugar was removed by immersing the structure into distilled water for 3 days. The obtained scaffolds presented highly spherical interconnected pores, with interconnection pathways from 10 to 100 lm. Pore interconnection was obtained without any additional step. Compression tests were carried out to evaluate the scaffold mechanical performances. Moreover, rabbit bone marrow mesenchymal stem cells were found to adhere and to proliferate in vitro in the scaffold over 21 days. This technique produced scaffold with highly spherical and interconnected pores without the use of additional organic solvents to leach out the porogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microgrids (MG) enable the integration of low capacity renewable energy resources with distribution systems. A recently proposed protection scheme for MGs utilising undervoltage, High Impedance Fault (HIF) detection, directional protection modules, and communication links significantly reduces the fault clearing time compared to previous schemes. In this paper, the effect of replacing undervoltage protection with differential protection in a scheme that also contains HIF and directional protection modules is studied. The MG model used in this study includes a diesel, wind, and two photovoltaic (PV) microsources. The alternative protection schemes are evaluated by simulation. It is found that the protection scheme consisting of differential, HIF detection, and directional protection modules is more effective compared to the alternative in protecting the MG from some fault conditions such as the phase-A-to-ground, phase-B-to-C, and phase-B-to-C-to-ground.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the last few years, there has been an increased attention paid on the developments of DC microgrids (DCMGs) and their applications. For economical and more flexible wind power generation, doubly fed induction generator (DFIG) is regarded as a most commonly used generator in wind farms. This paper presents a configuration and operation method for a DCMG connected with DFIGs, in which the controller of the DFIG is designed for maximum power point tracking (MPPT). The generation of harmonics and their effects on the generator in this configuration are analyzed and a harmonic compensation method is proposed. Furthermore, the simulation results are presented to show that the DFIG can be operated effectively in DCMGs and harmonic currents can be reduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With ever-increasing share of power electronic loads constant power instability is becoming a significant issue in microgrids, especially when they operate in the islanding mode. Transient conditions like resistive load-shedding or sudden increase of constant power loads (CPL) might destabilize the whole system. Modeling and stability analysis of AC microgrids with CPLs have already been discussed in literature. However, no effective solutions are provided to stabilize this kind of system. Therefore, this paper proposes a virtual resistance based active damping method to eliminate constant power instability in AC microgrids. Advantages and limitations of the proposed method are also discussed in detail. Simulation results are presented to validate the proposed active damping solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

为研究风电并网对互联系统低频振荡的影响,基于完整的双馈风电机组模型,定性分析了两区域互联系统在风电机组并网前后阻尼特性的变化情况.从双馈风电机组并网输送距离、并网容量、互联系统联络线传送功率、是否加装电力系统稳定器等多个方面,多角度分析了风电场并网对互联系统小干扰稳定及低频振荡特性的影响.之后,以两个包括两个区域的电力系统为例,进行了系统的计算分析和比较.结果表明,有双馈风电机组接入的互联电力系统,在不同运行模式下,双馈风电机组的并网输送距离、出力水平、联络线传送功率对低频振荡模式的影响在趋势和程度上均有显著差异,这样在对风电场进行入网规划、设计和运行时就需要综合考虑这些因素的影响.