869 resultados para Inter-procedural


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Software transactional memory (STM) has been proposed as a promising programming paradigm for shared memory multi-threaded programs as an alternative to conventional lock based synchronization primitives. Typical STM implementations employ a conflict detection scheme, which works with uniform access granularity, tracking shared data accesses either at word/cache line or at object level. It is well known that a single fixed access tracking granularity cannot meet the conflicting goals of reducing false conflicts without impacting concurrency adversely. A fine grained granularity while improving concurrency can have an adverse impact on performance due to lock aliasing, lock validation overheads, and additional cache pressure. On the other hand, a coarse grained granularity can impact performance due to reduced concurrency. Thus, in general, a fixed or uniform granularity access tracking (UGAT) scheme is application-unaware and rarely matches the access patterns of individual application or parts of an application, leading to sub-optimal performance for different parts of the application(s). In order to mitigate the disadvantages associated with UGAT scheme, we propose a Variable Granularity Access Tracking (VGAT) scheme in this paper. We propose a compiler based approach wherein the compiler uses inter-procedural whole program static analysis to select the access tracking granularity for different shared data structures of the application based on the application's data access pattern. We describe our prototype VGAT scheme, using TL2 as our STM implementation. Our experimental results reveal that VGAT-STM scheme can improve the application performance of STAMP benchmarks from 1.87% to up to 21.2%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Null dereferences are a bane of programming in languages such as Java. In this paper we propose a sound, demand-driven, inter-procedurally context-sensitive dataflow analysis technique to verify a given dereference as safe or potentially unsafe. Our analysis uses an abstract lattice of formulas to find a pre-condition at the entry of the program such that a null-dereference can occur only if the initial state of the program satisfies this pre-condition. We use a simplified domain of formulas, abstracting out integer arithmetic, as well as unbounded access paths due to recursive data structures. For the sake of precision we model aliasing relationships explicitly in our abstract lattice, enable strong updates, and use a limited notion of path sensitivity. For the sake of scalability we prune formulas continually as they get propagated, reducing to true conjuncts that are less likely to be useful in validating or invalidating the formula. We have implemented our approach, and present an evaluation of it on a set of ten real Java programs. Our results show that the set of design features we have incorporated enable the analysis to (a) explore long, inter-procedural paths to verify each dereference, with (b) reasonable accuracy, and (c) very quick response time per dereference, making it suitable for use in desktop development environments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O presente trabalho pretende apresentar um modelo unificado para o tratamento das estabilidades processuais (coisa julgada e preclusões). Para tanto, parte de duas premissas fundamentais: a segurança como continuidade jurídica, uma forma dinâmica de proteger a estabilidade sem impedir alterações de conteúdo nos atos jurídicos estáveis; e, de outro lado, a concepção das estabilidades processuais como uma cadeia de vínculos em contraditório. A combinação destas premissas resgata o papel da argumentação jurídica no sistema da coisa julgada, retomando a importância da vinculatividade das razões de decidir; e também incorpora ao modelo uma dimensão interprocessual que visa a garantir harmonia e coerência ao tráfego jurídico. Com base nestes pilares, tenta-se propor parâmetros para uma nova compreensão dos limites objetivos e temporais da coisa julgada. No campo dos limites objetivos, destaca-se a elaboração em torno dos esquemas argumentativos, estruturas aglutinadas de elementos processuais referentes ao exercício do contraditório. Em relação aos limites temporais, procura-se elaborar um modelo de revisão das estabilidades que incorpore o novum sem impedir a mudança. Neste contexto, trabalham-se também mecanismos compensatórios para a superação das estabilidades, tais como o ônus argumentativo no procedimento de quebra, e as regras de transição editadas pelo próprio Poder Judiciário.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This chapter discusses the code parallelization environment, where a number of tools that address the main tasks, such as code parallelization, debugging, and optimization are available. The parallelization tools include ParaWise and CAPO, which enable the near automatic parallelization of real world scientific application codes for shared and distributed memory-based parallel systems. The chapter discusses the use of ParaWise and CAPO to transform the original serial code into an equivalent parallel code that contains appropriate OpenMP directives. Additionally, as user involvement can introduce errors, a relative debugging tool (P2d2) is also available and can be used to perform near automatic relative debugging of an OpenMP program that has been parallelized either using the tools or manually. In order for these tools to be effective in parallelizing a range of applications, a high quality fully inter-procedural dependence analysis, as well as user interaction is vital to the generation of efficient parallel code and in the optimization of the backtracking and speculation process used in relative debugging. Results of parallelized NASA codes are discussed and show the benefits of using the environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A method for context-sensitive analysis of binaries that may have obfuscated procedure call and return operations is presented. Such binaries may use operators to directly manipulate stack instead of using native call and ret instructions to achieve equivalent behavior. Since definition of context-sensitivity and algorithms for context-sensitive analysis have thus far been based on the specific semantics associated to procedure call and return operations, classic interprocedural analyses cannot be used reliably for analyzing programs in which these operations cannot be discerned. A new notion of context-sensitivity is introduced that is based on the state of the stack at any instruction. While changes in 'calling'-context are associated with transfer of control, and hence can be reasoned in terms of paths in an interprocedural control flow graph (ICFG), the same is not true of changes in 'stack'-context. An abstract interpretation based framework is developed to reason about stack-contexts and to derive analogues of call-strings based methods for the context-sensitive analysis using stack-context. The method presented is used to create a context-sensitive version of Venable et al.'s algorithm for detecting obfuscated calls. Experimental results show that the context-sensitive version of the algorithm generates more precise results and is also computationally more efficient than its context-insensitive counterpart. Copyright © 2010 ACM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since Sharir and Pnueli, algorithms for context-sensitivity have been defined in terms of 'valid' paths in an interprocedural flow graph. The definition of valid paths requires atomic call and ret statements, and encapsulated procedures. Thus, the resulting algorithms are not directly applicable when behavior similar to call and ret instructions may be realized using non-atomic statements, or when procedures do not have rigid boundaries, such as with programs in low level languages like assembly or RTL. We present a framework for context-sensitive analysis that requires neither atomic call and ret instructions, nor encapsulated procedures. The framework presented decouples the transfer of control semantics and the context manipulation semantics of statements. A new definition of context-sensitivity, called stack contexts, is developed. A stack context, which is defined using trace semantics, is more general than Sharir and Pnueli's interprocedural path based calling-context. An abstract interpretation based framework is developed to reason about stack-contexts and to derive analogues of calling-context based algorithms using stack-context. The framework presented is suitable for deriving algorithms for analyzing binary programs, such as malware, that employ obfuscations with the deliberate intent of defeating automated analysis. The framework is used to create a context-sensitive version of Venable et al.'s algorithm for analyzing x86 binaries without requiring that a binary conforms to a standard compilation model for maintaining procedures, calls, and returns. Experimental results show that a context-sensitive analysis using stack-context performs just as well for programs where the use of Sharir and Pnueli's calling-context produces correct approximations. However, if those programs are transformed to use call obfuscations, a contextsensitive analysis using stack-context still provides the same, correct results and without any additional overhead. © Springer Science+Business Media, LLC 2011.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Irregular computations pose sorne of the most interesting and challenging problems in automatic parallelization. Irregularity appears in certain kinds of numerical problems and is pervasive in symbolic applications. Such computations often use dynamic data structures, which make heavy use of pointers. This complicates all the steps of a parallelizing compiler, from independence detection to task partitioning and placement. Starting in the mid 80s there has been significant progress in the development of parallelizing compilers for logic pro­gramming (and more recently, constraint programming) resulting in quite capable paralle­lizers. The typical applications of these paradigms frequently involve irregular computations, and make heavy use of dynamic data structures with pointers, since logical variables represent in practice a well-behaved form of pointers. This arguably makes the techniques used in these compilers potentially interesting. In this paper, we introduce in a tutoríal way, sorne of the problems faced by parallelizing compilers for logic and constraint programs and provide pointers to sorne of the significant progress made in the area. In particular, this work has resulted in a series of achievements in the areas of inter-procedural pointer aliasing analysis for independence detection, cost models and cost analysis, cactus-stack memory management, techniques for managing speculative and irregular computations through task granularity control and dynamic task allocation such as work-stealing schedulers), etc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Irregular computations pose some of the most interesting and challenging problems in automatic parallelization. Irregularity appears in certain kinds of numerical problems and is pervasive in symbolic applications. Such computations often use dynamic data structures which make heavy use of pointers. This complicates all the steps of a parallelizing compiler, from independence detection to task partitioning and placement. In the past decade there has been significant progress in the development of parallelizing compilers for logic programming and, more recently, constraint programming. The typical applications of these paradigms frequently involve irregular computations, which arguably makes the techniques used in these compilers potentially interesting. In this paper we introduce in a tutorial way some of the problems faced by parallelizing compilers for logic and constraint programs. These include the need for inter-procedural pointer aliasing analysis for independence detection and having to manage speculative and irregular computations through task granularity control and dynamic task allocation. We also provide pointers to some of the progress made in these áreas. In the associated talk we demónstrate representatives of several generations of these parallelizing compilers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract interpretation has been widely used for the analysis of object-oriented languages and, in particular, Java source and bytecode. However, while most existing work deals with the problem of flnding expressive abstract domains that track accurately the characteristics of a particular concrete property, the underlying flxpoint algorithms have received comparatively less attention. In fact, many existing (abstract interpretation based—) flxpoint algorithms rely on relatively inefHcient techniques for solving inter-procedural caligraphs or are speciflc and tied to particular analyses. We also argüe that the design of an efficient fixpoint algorithm is pivotal to supporting the analysis of large programs. In this paper we introduce a novel algorithm for analysis of Java bytecode which includes a number of optimizations in order to reduce the number of iterations. The algorithm is parametric -in the sense that it is independent of the abstract domain used and it can be applied to different domains as "plug-ins"-, multivariant, and flow-sensitive. Also, is based on a program transformation, prior to the analysis, that results in a highly uniform representation of all the features in the language and therefore simplifies analysis. Detailed descriptions of decompilation solutions are given and discussed with an example. We also provide some performance data from a preliminary implementation of the analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract interpretation has been widely used for the analysis of object-oriented languages and, more precisely, Java source and bytecode. However, while most of the existing work deals with the problem of finding expressive abstract domains that track accurately the characteristics of a particular concrete property, the underlying fixpoint algorithms have received comparatively less attention. In fact, many existing (abstract interpretation based) fixpoint algorithms rely on relatively inefficient techniques to solve inter-procedural call graphs or are specific and tied to particular analyses. We argue that the design of an efficient fixpoint algorithm is pivotal to support the analysis of large programs. In this paper we introduce a novel algorithm for analysis of Java bytecode which includes a number of optimizations in order to reduce the number of iterations. Also, the algorithm is parametric in the sense that it is independent of the abstract domain used and it can be applied to different domains as "plug-ins". It is also incremental in the sense that, if desired, analysis data can be saved so that only a reduced amount of reanalysis is needed after a small program change, which can be instrumental for large programs. The algorithm is also multivariant and flowsensitive. Finally, another interesting characteristic of the algorithm is that it is based on a program transformation, prior to the analysis, that results in a highly uniform representation of all the features in the language and therefore simplifies analysis. Detailed descriptions of decompilation solutions are provided and discussed with an example.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Las pruebas de software (Testing) son en la actualidad la técnica más utilizada para la validación y la evaluación de la calidad de un programa. El testing está integrado en todas las metodologías prácticas de desarrollo de software y juega un papel crucial en el éxito de cualquier proyecto de software. Desde las unidades de código más pequeñas a los componentes más complejos, su integración en un sistema de software y su despliegue a producción, todas las piezas de un producto de software deben ser probadas a fondo antes de que el producto de software pueda ser liberado a un entorno de producción. La mayor limitación del testing de software es que continúa siendo un conjunto de tareas manuales, representando una buena parte del coste total de desarrollo. En este escenario, la automatización resulta fundamental para aliviar estos altos costes. La generación automática de casos de pruebas (TCG, del inglés test case generation) es el proceso de generar automáticamente casos de prueba que logren un alto recubrimiento del programa. Entre la gran variedad de enfoques hacia la TCG, esta tesis se centra en un enfoque estructural de caja blanca, y más concretamente en una de las técnicas más utilizadas actualmente, la ejecución simbólica. En ejecución simbólica, el programa bajo pruebas es ejecutado con expresiones simbólicas como argumentos de entrada en lugar de valores concretos. Esta tesis se basa en un marco general para la generación automática de casos de prueba dirigido a programas imperativos orientados a objetos (Java, por ejemplo) y basado en programación lógica con restricciones (CLP, del inglés constraint logic programming). En este marco general, el programa imperativo bajo pruebas es primeramente traducido a un programa CLP equivalente, y luego dicho programa CLP es ejecutado simbólicamente utilizando los mecanismos de evaluación estándar de CLP, extendidos con operaciones especiales para el tratamiento de estructuras de datos dinámicas. Mejorar la escalabilidad y la eficiencia de la ejecución simbólica constituye un reto muy importante. Es bien sabido que la ejecución simbólica resulta impracticable debido al gran número de caminos de ejecución que deben ser explorados y a tamaño de las restricciones que se deben manipular. Además, la generación de casos de prueba mediante ejecución simbólica tiende a producir un número innecesariamente grande de casos de prueba cuando es aplicada a programas de tamaño medio o grande. Las contribuciones de esta tesis pueden ser resumidas como sigue. (1) Se desarrolla un enfoque composicional basado en CLP para la generación de casos de prueba, el cual busca aliviar el problema de la explosión de caminos interprocedimiento analizando de forma separada cada componente (p.ej. método) del programa bajo pruebas, almacenando los resultados y reutilizándolos incrementalmente hasta obtener resultados para el programa completo. También se ha desarrollado un enfoque composicional basado en especialización de programas (evaluación parcial) para la herramienta de ejecución simbólica Symbolic PathFinder (SPF). (2) Se propone una metodología para usar información del consumo de recursos del programa bajo pruebas para guiar la ejecución simbólica hacia aquellas partes del programa que satisfacen una determinada política de recursos, evitando la exploración de aquellas partes del programa que violan dicha política. (3) Se propone una metodología genérica para guiar la ejecución simbólica hacia las partes más interesantes del programa, la cual utiliza abstracciones como generadores de trazas para guiar la ejecución de acuerdo a criterios de selección estructurales. (4) Se propone un nuevo resolutor de restricciones, el cual maneja eficientemente restricciones sobre el uso de la memoria dinámica global (heap) durante ejecución simbólica, el cual mejora considerablemente el rendimiento de la técnica estándar utilizada para este propósito, la \lazy initialization". (5) Todas las técnicas propuestas han sido implementadas en el sistema PET (el enfoque composicional ha sido también implementado en la herramienta SPF). Mediante evaluación experimental se ha confirmado que todas ellas mejoran considerablemente la escalabilidad y eficiencia de la ejecución simbólica y la generación de casos de prueba. ABSTRACT Testing is nowadays the most used technique to validate software and assess its quality. It is integrated into all practical software development methodologies and plays a crucial role towards the success of any software project. From the smallest units of code to the most complex components and their integration into a software system and later deployment; all pieces of a software product must be tested thoroughly before a software product can be released. The main limitation of software testing is that it remains a mostly manual task, representing a large fraction of the total development cost. In this scenario, test automation is paramount to alleviate such high costs. Test case generation (TCG) is the process of automatically generating test inputs that achieve high coverage of the system under test. Among a wide variety of approaches to TCG, this thesis focuses on structural (white-box) TCG, where one of the most successful enabling techniques is symbolic execution. In symbolic execution, the program under test is executed with its input arguments being symbolic expressions rather than concrete values. This thesis relies on a previously developed constraint-based TCG framework for imperative object-oriented programs (e.g., Java), in which the imperative program under test is first translated into an equivalent constraint logic program, and then such translated program is symbolically executed by relying on standard evaluation mechanisms of Constraint Logic Programming (CLP), extended with special treatment for dynamically allocated data structures. Improving the scalability and efficiency of symbolic execution constitutes a major challenge. It is well known that symbolic execution quickly becomes impractical due to the large number of paths that must be explored and the size of the constraints that must be handled. Moreover, symbolic execution-based TCG tends to produce an unnecessarily large number of test cases when applied to medium or large programs. The contributions of this dissertation can be summarized as follows. (1) A compositional approach to CLP-based TCG is developed which overcomes the inter-procedural path explosion by separately analyzing each component (method) in a program under test, stowing the results as method summaries and incrementally reusing them to obtain whole-program results. A similar compositional strategy that relies on program specialization is also developed for the state-of-the-art symbolic execution tool Symbolic PathFinder (SPF). (2) Resource-driven TCG is proposed as a methodology to use resource consumption information to drive symbolic execution towards those parts of the program under test that comply with a user-provided resource policy, avoiding the exploration of those parts of the program that violate such policy. (3) A generic methodology to guide symbolic execution towards the most interesting parts of a program is proposed, which uses abstractions as oracles to steer symbolic execution through those parts of the program under test that interest the programmer/tester most. (4) A new heap-constraint solver is proposed, which efficiently handles heap-related constraints and aliasing of references during symbolic execution and greatly outperforms the state-of-the-art standard technique known as lazy initialization. (5) All techniques above have been implemented in the PET system (and some of them in the SPF tool). Experimental evaluation has confirmed that they considerably help towards a more scalable and efficient symbolic execution and TCG.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The driving force behind this study is the gap between the reality of the firms engaged in project business and the available studies covering project management and business process development. Previous studies show that project-based organizations were ‘immature’ in terms of the project-management ‘maturity model’, as few firms were found to be optimizing processes. Even within those, very little attention was paid to combine inter-organizational and intra-organizational perspectives. In this study an effort is made to elaborate some thoughts and views on project management, which interrelate firms’ external and internal activities. In line with the integration, the dissertation uses an approach to the management of project-business interdependencies in the networks of actors, activities and resources. Firstly, the study develops an understanding for inter-organizational perspectives by exploring the complementarities of process activities in the basic development of project business. It presents a framework that is elaborated on the basis of the reciprocal interactions of activities within and outside the organization—thus providing a coherent basis for continuous business-process improvement. In addition, the study presents new tools that can be used to develop project-business processes in each of its functional areas. The research demonstrates how project-business activities can be optimized using the right resources at the right time with the right actors and the right actions. The selected five articles included in this dissertation explain the basic framework for the development of project business. Each paper covers various aspects of inter-organizational and intra-organizational perspectives for project management. The study develops a valuable and procedural model for business-process improvement using the Delphi method that can be used not only in academia but also as a guide for practitioners that takes them through a series of well-defined steps when making informed, consistent and efficient changes to their business processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabalho apresenta uma técnica de verificação formal de Sistemas de Raciocínio Procedural, PRS (Procedural Reasoning System), uma linguagem de programação que utiliza a abordagem do raciocínio procedural. Esta técnica baseia-se na utilização de regras de conversão entre programas PRS e Redes de Petri Coloridas (RPC). Para isso, são apresentadas regras de conversão de um sub-conjunto bem expressivo da maioria da sintaxe utilizada na linguagem PRS para RPC. A fim de proceder fia verificação formal do programa PRS especificado, uma vez que se disponha da rede de Petri equivalente ao programa PRS, utilizamos o formalismo das RPCs (verificação das propriedades estruturais e comportamentais) para analisarmos formalmente o programa PRS equivalente. Utilizamos uma ferramenta computacional disponível para desenhar, simular e analisar as redes de Petri coloridas geradas. Uma vez que disponhamos das regras de conversão PRS-RPC, podemos ser levados a querer fazer esta conversão de maneira estritamente manual. No entanto, a probabilidade de introdução de erros na conversão é grande, fazendo com que o esforço necessário para garantirmos a corretude da conversão manual seja da mesma ordem de grandeza que a eliminação de eventuais erros diretamente no programa PRS original. Assim, a conversão automatizada é de suma importância para evitar que a conversão manual nos leve a erros indesejáveis, podendo invalidar todo o processo de conversão. A principal contribuição deste trabalho de pesquisa diz respeito ao desenvolvimento de uma técnica de verificação formal automatizada que consiste basicamente em duas etapas distintas, embora inter-relacionadas. A primeira fase diz respeito fias regras de conversão de PRS para RPC. A segunda fase é concernente ao desenvolvimento de um conversor para fazer a transformação de maneira automatizada dos programas PRS para as RPCs. A conversão automática é possível, porque todas as regras de conversão apresentadas seguem leis de formação genéricas, passíveis de serem incluídas em algoritmos