982 resultados para Inter-level transitions
Resumo:
Nous étudions la recombinaison radiative des porteurs de charges photogénérés dans les puits quantiques InGaN/GaN étroits (2 nm). Nous caractérisons le comportement de la photoluminescence face aux différentes conditions expérimentales telles la température, l'énergie et la puissance de l'excitation et la tension électrique appliquée. Ces mesures montrent que l'émission provient d'états localisés. De plus, les champs électriques, présents nativement dans ces matériaux, n'ont pas une influence dominante sur la recombinaison des porteurs. Nous avons montré que le spectre d'émission se modifie significativement et subitement lorsque la puissance de l'excitation passe sous un certain seuil. L'émission possède donc deux ``phases'' dont nous avons déterminé le diagramme. La phase adoptée dépend à la fois de la puissance, de la température et de la tension électrique appliquée. Nous proposons que la phase à basse puissance soit associée à un état électriquement chargé dans le matériau. Ensuite, nous avons caractérisé la dynamique temporelle de notre échantillon. Le taux de répétition de l'excitation a une influence importante sur la dynamique mesurée. Nous concluons qu'elle ne suit pas une exponentielle étirée comme on le pensait précédemment. Elle est exponentielle à court temps et suit une loi de puissance à grand temps. Ces deux régimes sont lié à un seul et même mécanisme de recombinaison. Nous avons développé un modèle de recombinaison à trois niveaux afin d'expliquer le comportement temporel de la luminescence. Ce modèle suppose l'existence de centres de localisation où les porteurs peuvent se piéger, indépendamment ou non. L'électron peut donc se trouver sur un même centre que le trou ou sur n'importe quel autre centre. En supposant le transfert des porteurs entre centres par saut tunnel on détermine, en fonction de la distribution spatiale des centres, la dynamique de recombinaison. Ce modèle indique que la recombinaison dans les puits InGaN/GaN minces est liée à des agglomérats de centre de localisation.
Resumo:
The aim of this study was to compare the race characteristics of the start and turn segments of national and regional level swimmers. In the study, 100 and 200-m events were analysed during the finals session of the Open Comunidad de Madrid (Spain) tournament. The “individualized-distance” method with two-dimensional direct linear transformation algorithm was used to perform race analyses. National level swimmers obtained faster velocities in all race segments and stroke comparisons,although significant inter-level differences in start velocity were only obtained in half (8 out of 16) of the analysed events. Higher level swimmers also travelled for longer start and turn distances but only in the race segments where the gain of speed was high. This was observed in the turn segments, in the backstroke and butterfly strokes and during the 200-m breaststroke event, but not in any of the freestyle events. Time improvements due to the appropriate extension of the underwater subsections appeared to be critical for the end race result and should be carefully evaluated by the “individualized-distance” method.
Resumo:
This article presents a systematic framework for modeling several classes of illness-sickness-disease named as Holopathogenesis. Holopathogenesis is defined as processes of over-determination of diseases and related conditions taken as a whole, comprising selected facets of the complex object Health. First, a conceptual background of Holopathogenesis is presented as a series of significant interfaces (biomolecular-immunological, physiopathological-clinical, epidemiological-ecosocial). Second, propositions derived from Holopathogenesis are introduced in order to allow drawing the disease-illness-sickness complex as a hierarchical network of networks. Third, a formalization of intra- and inter-level correspondences, over-determination processes, effects and links of Holopathogenesis models is proposed. Finally, the Holopathogenesis frame is evaluated as a comprehensive theoretical pathology taken as a preliminary step towards a unified theory of health-disease.
Resumo:
OBJECTIVE The objective of this study was to analyze whether socioeconomic conditions and the period of availability of fluoridated water are associated with the number of teeth present.METHODSThis cross-sectional study analyzed data from 1,720 adults between 20 and 59 years of age who resided in Florianópolis, SC, Southern Brazil, in 2009. The outcome investigated was the self-reported number of teeth present. The individual independent variables included gender, age range, skin color, number of years of schooling, and per capita household income. The duration of residence was used as a control variable. The contextual exposures included the period of availability of fluoridated water to the households and the socioeconomic variable for the census tracts, which was created from factor analysis of the tract’s mean income, education level, and percentage of households with treated water. Multilevel logistic regression was performed and inter-level interactions were tested.RESULTS Residents in intermediate and poorer areas and those with fluoridated water available for less time exhibited the presence of fewer teeth compared with those in better socioeconomic conditions and who had fluoridated water available for a longer period (OR = 1.02; 95%CI 1.01;1.02). There was an association between the period of availability of fluoridated water, per capita household income and number of years of education. The proportion of individuals in the poorer and less-educated stratum, which had fewer teeth present, was higher in regions where fluoridated water had been available for less time.CONCLUSIONS Poor socioeconomic conditions and a shorter period of availability of fluoridated water were associated with the probability of having fewer teeth in adulthood. Public policies aimed at reducing socioeconomic inequalities and increasing access to health services such as fluoridation of the water supply may help to reduce tooth loss in the future.
Resumo:
More than thirty years ago, Amari and colleagues proposed a statistical framework for identifying structurally stable macrostates of neural networks from observations of their microstates. We compare their stochastic stability criterion with a deterministic stability criterion based on the ergodic theory of dynamical systems, recently proposed for the scheme of contextual emergence and applied to particular inter-level relations in neuroscience. Stochastic and deterministic stability criteria for macrostates rely on macro-level contexts, which make them sensitive to differences between different macro-levels.
Resumo:
We present a theoretical study of the structural and electronic properties of the M-doped MgIn2S4 ternary spinel semiconductor with M = V, Cr, and Mn. All substitutions, in the normal and in the inverse structure, are analyzed. Some of these possible substitutions present intermediate-band states in the band gap with a different occupation for a spin component. It increases the possibilities of inter-band transitions and could be interesting for applications in optoelectronic devices. The contribution to, and the electronic configuration of, these intermediate bands for the octahedral and tetrahedral sites is analyzed and discussed. The study of the substitutional energies indicates that these substitutions are favorable. Comparison between the pure and doped hosts absorption coefficients shows that this deeper band opens up more photon absorption channels and could therefore increase the solar-light absorption with respect to the host.
Resumo:
The CdIn2S4 spinel semiconductor is a potential photovoltaic material due to its energy band gap and absorption properties. These optoelectronic properties can be potentiality improved by the insertion of intermediate states into the energy bandgap. We explore this possibility using M = Cr, V and Mn as an impurity. We analyze with first-principles almost all substitutions of the host atoms by M at the octahedral and tetrahedral sites in the normal and inverse spinel structures. In almost all cases, the impurities introduce deeper bands into the host energy bandgap. Depending on the site substitution, these bands are full, empty or partially-full. It increases the number of possible inter-band transitions and the possible applications in optoelectronic devices. The contribution of the impurity states to these bands and the substitutional energies indicate that these impurities are energetically favorable for some sites in the host spinel. The absorption coefficients in the independent-particle approximation show that these deeper bands open additional photon absorption channels. It could therefore increase the solar-light absorption with respect to the host.
Resumo:
Ternary MCrO4 (M = Ba, Sr) semiconductors are materials with a variety of photocatalyst and optoelectronic applications. We present detailed microscopic analyses based on first principles of the structure, the electronic properties and the optical absorption in which the difference between symmetrically non-equivalent atoms has been considered. The high absorption coefficients of these materials are split into chemical species contributions in accordance with the symmetry. The high optical absorption in these materials is mainly because of the Cr–O inter-species transitions.
Resumo:
In this thesis, a TCAD approach for the investigation of charge transport in amorphous silicon dioxide is presented for the first time. The proposed approach is used to investigate high-voltage silicon oxide thick TEOS capacitors embedded in the back-end inter-level dielectric layers for galvanic insulation applications. In the first part of this thesis, a detailed review of the main physical and chemical properties of silicon dioxide and the main physical models for the description of charge transport in insulators are presented. In the second part, the characterization of high-voltage MIM structures at different high-field stress conditions up to the breakdown is presented. The main physical mechanisms responsible of the observed results are then discussed in details. The third part is dedicated to the implementation of a TCAD approach capable of describing charge transport in silicon dioxide layers in order to gain insight into the microscopic physical mechanisms responsible of the leakage current in MIM structures. In particular, I investigated and modeled the role of charge injection at contacts and charge build-up due to trapping and de-trapping mechanisms in the oxide layer to the purpose of understanding its behavior under DC and AC stress conditions. In addition, oxide breakdown due to impact-ionization of carriers has been taken into account in order to have a complete representation of the oxide behavior at very high fields. Numerical simulations have been compared against experiments to quantitatively validate the proposed approach. In the last part of the thesis, the proposed approach has been applied to simulate the breakdown in realistic structures under different stress conditions. The TCAD tool has been used to carry out a detailed analysis of the most relevant physical quantities, in order to gain a detailed understanding on the main mechanisms responsible for breakdown and guide design optimization.
Resumo:
We study a three-level atomic system of the vee type, but driven on only one transition by a monochromatic laser. It is shown that the gain of a probe beam, recently predicted for this system by Menon and Agarwal (Menon S and Agarwal G 2000 Phys. Rev. A 61 13 807), is due to an unexpected amplification on a completely inverted, nondecaying (dark) transition. This prediction violates the well known balance condition between the population inversion and the coupling strength of the probe field to the inverted transition, which requires that the coupling strength reduces with increasing population inversion. We show that the condition may be violated only if the probe field selectively couples to just one of the atomic transitions: when it couples to both transitions, the balance condition is satisfied and the system is transparent for the probe field coupled to the dark transitions. No amplification is possible in the latter case.
Resumo:
BACKGROUND: Many studies have tracked the distribution and persistence of avian haemosporidian communities across space and time at the population level, but few studies have investigated these aspects of infection at the individual level over time. Important aspects of parasite infection at the individual level can be missed if only trends at the population level are studied. This study aimed to determine how persistent Haemosporida are in great tit individuals recaptured over several years, whether parasitaemia differed by parasite lineage (mitochondrial cytochrome b haplotype) and how co-infection (i.e. concurrent infection with multiple genera of parasites) affects parasitaemia and body mass. METHODS: Parasite prevalence was determined by polymerase chain reaction (PCR), quantitative PCR were used to assess parasitaemia and sequencing was employed to determine the identity of the lineages using the MalAvi database. RESULTS: Haemosporidian prevalence was high over sampled years with 98% of 55 recaptured individuals showing infection in at least one year of capture. Eighty-two percent of all positive individuals suffered co-infection, with an overall haemosporidian lineage diversity of seventeen. Plasmodium and Haemoproteus parasites were found to be highly persistent, with lineages from these genera consistently found in individuals across years and with no differences in individual parasitaemia being recorded at subsequent captures. Conversely, Leucocytozoon parasites showed higher turnover with regard to lineage changes or transitions in infection status (infected vs non-infected) across years. Parasitaemia was found to be lineage specific and there was no relationship between Plasmodium parasitaemia or host body condition and the presence of Leucocytozoon parasites. CONCLUSIONS: The findings of this study suggest that different genera of haemosporidian parasites interact differently with their host and other co-infecting parasites, influencing parasite persistence most likely through inter-parasite competition or host-parasite immune interactions. Even-though co-infections do not seem to result in increased virulence (higher parasitaemia or poorer host body condition), further investigation into infection potential of these parasites, both individually and as co-infections, is necessary.
Resumo:
The Long Term Evolution (LTE) cellular technology is expected to extend the capacity and improve the performance of current 3G cellular networks. Among the key mechanisms in LTE responsible for traffic management is the packet scheduler, which handles the allocation of resources to active flows in both the frequency and time dimension. This paper investigates for various scheduling scheme how they affect the inter-cell interference characteristics and how the interference in turn affects the user’s performance. A special focus in the analysis is on the impact of flow-level dynamics resulting from the random user behaviour. For this we use a hybrid analytical/simulation approach which enables fast evaluation of flow-level performance measures. Most interestingly, our findings show that the scheduling policy significantly affects the inter-cell interference pattern but that the scheduler specific pattern has little impact on the flow-level performance.
Resumo:
Background: The health action process approach (hapa) is a well-established model in predicting health behavior and assumes that volitional processes are important for effective behavioral change. however, only few studies have so far tested associations on the intraindividual level. thus, this study examined the inter- and intraindividual associations between volitional predictors and daily smoking around a quit attempt. method: overall, 105 smokers completed daily electronic questionnaires 10 days before and 21 days after a self-set quit date, including measures of intentions, self-efficacy, planning, action control and numbers of cigarettes smoked. multilevel analysis was applied. findings: at the interindividual level, higher mean levels of volitional predictors across the 32 days were associated with less numbers of cigarettes smoked. negative associations emerged also at the intraindividual level, indicating that on days with higher intentions, self-efficacy, planning and action control than usual, less cigarettes were smoked. moreover, these effects were stronger after the quit date than before the quit date. intentions and action control emerged as most powerful predictors at the intraindividual level. discussion: findings confirm assumptions of the hapa and emphasize the importance of volitional processes at the inter- and intraindividual level in the context of quitting smoking.