975 resultados para Inter-firm Project


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research reports on the appropriate governance, i.e. design and management, of inter-firm R&D relationships in order to achieve sustainable competitive success for the whole partnership as well as its individual members. An exploratory study in the German automotive industry using inductive Grounded Theory was conducted. This involved data collection via 28 semi-structured interviews with 16 companies in order to form a set of 35 tentative propositions that have been validated via a questionnaire survey receiving 110 responses from 52 companies. The research has resulted in the consolidation of the validated propositions into a novel concept termed Collaborative Enterprise Governance. The core of the concept is a competence based contingency framework that helps decision makers in selecting the most appropriate governance strategy (i.e. sourcing strategy) for an inter-firm R&D relationship between a buyer and its supplier. Thereby, the concept does not draw on whole company-to-company connectivity. It rather conceptualises an inter-firm relationship to be composed of autonomous cross-functional units of the individual partner companies that contribute value to a particular joint R&D project via the possession of task specific competencies. The novel concept and its elements have been evaluated in a focus group with industrial experts of the German automotive industry and revealed positive effects on the sustainable competitive success of the whole partnership and the individual partner companies. However, it also showed that current practice does not apply the right mechanisms for its implementation and hence guidelines for practitioners and decision makers involved in inter-firm R&D collaboration in the automotive industry are offered on how to facilitate the implementation and usage of the Collaborative Enterprise Governance philosophy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[cat] Analitzem una economia amb dues característiques principals: la mobilitat dels treballadors implica transferència de coneixement i la productivitat de l’empresa augmenta amb l’intercanvi de coneixement. Cada empresa desenvolupa un tipus de coneixement que serà trasmès a la resta de la indústria mitjançant la mobilitat de treballadors. Estudiem dues estructures de mercat laboral i utilitzant un anàlisi comparatiu derivem les implicacions del model. Els resultats revelen com la mobilitat de treballadors depèn en la varietat i nivell del coneixement, la presència de costos de mobilitat, les institucions, la capacitat d’absorvir coneixement per part de les empreses i la mida de la indústria. Els resultats no depenen de l’estructura del mercat laboral.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[cat] Analitzem una economia amb dues característiques principals: la mobilitat dels treballadors implica transferència de coneixement i la productivitat de l’empresa augmenta amb l’intercanvi de coneixement. Cada empresa desenvolupa un tipus de coneixement que serà trasmès a la resta de la indústria mitjançant la mobilitat de treballadors. Estudiem dues estructures de mercat laboral i utilitzant un anàlisi comparatiu derivem les implicacions del model. Els resultats revelen com la mobilitat de treballadors depèn en la varietat i nivell del coneixement, la presència de costos de mobilitat, les institucions, la capacitat d’absorvir coneixement per part de les empreses i la mida de la indústria. Els resultats no depenen de l’estructura del mercat laboral.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Yritysten välinen yhteistyö kasvaa asiantuntijamarkkinoilla. Suppean palvelutarjooman omaavat yritykset muodostavat laajempia palveluita yhdistämällä osaamisiaan kumppaneidensa kanssa. Näin muodostuvat yritysryhmittymät uhkaavat alaa hallitsevia monipuolisen palvelutarjooman omaavia kansainvälisiä moniosaajayrityksiä. Tämän diplomityön tavoitteena on selvittää minkälaisia hyötyjä moniosaajayritys voi saada näitä ryhmittymiä vastaan lisäämällä omaa yhteistyötään. Tavoitteeseen pääsemiseksi markkinoilla olevat yritysryhmittymät tunnistetaan ja selvitetään minkälaisia asioita asiakas pitää tärkeänä ostaessaan asiantuntijapalveluita. Toimialan trendit ja aikaisemmat tutkimukset yritysten välisestä yhteistyöstä sekä asiakkaan ostokäyttäytymisestä osoittavat, että yhteistyön avulla yrityksellä on mahdollisuus saavuttaa monia hyötyjä. Tietoa olemassa olevista yritysryhmittymistä ja asiakkaiden ostokäyttäytymisestä kerättiin haastattelemalla yhden kansainvälisen moniosaajayrityksen henkilöstöä sekä asiakkaita. Tuloksena löytyi yritysryhmittymiä, joista osa uhkaa moniosaajayrityksen kilpailuetua. Asiakkaiden ostokäyttäyminen suosi hieman enemmän asiantuntijapalveluiden hankkimista yritysryhmittymältä moniosaajayrityksen sijaan. Tekemällä yhteistyötä ja tarjoamalla tiettyjä palveluita yhdessä kumppanin kanssa, moniosaajayritys voi saavuttaa hyötyjä yritysryhmittymiä vastaan ja vaikuttaa positiivisesti asiakkaan ostokäyttäytymiseen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global wetlands are believed to be climate sensitive, and are the largest natural emitters of methane (CH4). Increased wetland CH4 emissions could act as a positive feedback to future warming. The Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP) investigated our present ability to simulate large-scale wetland characteristics and corresponding CH4 emissions. To ensure inter-comparability, we used a common experimental protocol driving all models with the same climate and carbon dioxide (CO2) forcing datasets. The WETCHIMP experiments were conducted for model equilibrium states as well as transient simulations covering the last century. Sensitivity experiments investigated model response to changes in selected forcing inputs (precipitation, temperature, and atmospheric CO2 concentration). Ten models participated, covering the spectrum from simple to relatively complex, including models tailored either for regional or global simulations. The models also varied in methods to calculate wetland size and location, with some models simulating wetland area prognostically, while other models relied on remotely sensed inundation datasets, or an approach intermediate between the two. Four major conclusions emerged from the project. First, the suite of models demonstrate extensive disagreement in their simulations of wetland areal extent and CH4 emissions, in both space and time. Simple metrics of wetland area, such as the latitudinal gradient, show large variability, principally between models that use inundation dataset information and those that independently determine wetland area. Agreement between the models improves for zonally summed CH4 emissions, but large variation between the models remains. For annual global CH4 emissions, the models vary by ±40% of the all-model mean (190 Tg CH4 yr−1). Second, all models show a strong positive response to increased atmospheric CO2 concentrations (857 ppm) in both CH4 emissions and wetland area. In response to increasing global temperatures (+3.4 °C globally spatially uniform), on average, the models decreased wetland area and CH4 fluxes, primarily in the tropics, but the magnitude and sign of the response varied greatly. Models were least sensitive to increased global precipitation (+3.9 % globally spatially uniform) with a consistent small positive response in CH4 fluxes and wetland area. Results from the 20th century transient simulation show that interactions between climate forcings could have strong non-linear effects. Third, we presently do not have sufficient wetland methane observation datasets adequate to evaluate model fluxes at a spatial scale comparable to model grid cells (commonly 0.5°). This limitation severely restricts our ability to model global wetland CH4 emissions with confidence. Our simulated wetland extents are also difficult to evaluate due to extensive disagreements between wetland mapping and remotely sensed inundation datasets. Fourth, the large range in predicted CH4 emission rates leads to the conclusion that there is both substantial parameter and structural uncertainty in large-scale CH4 emission models, even after uncertainties in wetland areas are accounted for.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Wetland and Wetland CH4 Intercomparison of Models Project (WETCHIMP) was created to evaluate our present ability to simulate large-scale wetland characteristics and corresponding methane (CH4) emissions. A multi-model comparison is essential to evaluate the key uncertainties in the mechanisms and parameters leading to methane emissions. Ten modelling groups joined WETCHIMP to run eight global and two regional models with a common experimental protocol using the same climate and atmospheric carbon dioxide (CO2) forcing datasets. We reported the main conclusions from the intercomparison effort in a companion paper (Melton et al., 2013). Here we provide technical details for the six experiments, which included an equilibrium, a transient, and an optimized run plus three sensitivity experiments (temperature, precipitation, and atmospheric CO2 concentration). The diversity of approaches used by the models is summarized through a series of conceptual figures, and is used to evaluate the wide range of wetland extent and CH4 fluxes predicted by the models in the equilibrium run. We discuss relationships among the various approaches and patterns in consistencies of these model predictions. Within this group of models, there are three broad classes of methods used to estimate wetland extent: prescribed based on wetland distribution maps, prognostic relationships between hydrological states based on satellite observations, and explicit hydrological mass balances. A larger variety of approaches was used to estimate the net CH4 fluxes from wetland systems. Even though modelling of wetland extent and CH4 emissions has progressed significantly over recent decades, large uncertainties still exist when estimating CH4 emissions: there is little consensus on model structure or complexity due to knowledge gaps, different aims of the models, and the range of temporal and spatial resolutions of the models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many institutions worldwide have developed ocean reanalyses systems (ORAs) utilizing a variety of ocean models and assimilation techniques. However, the quality of salinity reanalyses arising from the various ORAs has not yet been comprehensively assessed. In this study, we assess the upper ocean salinity content (depth-averaged over 0–700 m) from 14 ORAs and 3 objective ocean analysis systems (OOAs) as part of the Ocean Reanalyses Intercomparison Project. Our results show that the best agreement between estimates of salinity from different ORAs is obtained in the tropical Pacific, likely due to relatively abundant atmospheric and oceanic observations in this region. The largest disagreement in salinity reanalyses is in the Southern Ocean along the Antarctic circumpolar current as a consequence of the sparseness of both atmospheric and oceanic observations in this region. The West Pacific warm pool is the largest region where the signal to noise ratio of reanalysed salinity anomalies is >1. Therefore, the current salinity reanalyses in the tropical Pacific Ocean may be more reliable than those in the Southern Ocean and regions along the western boundary currents. Moreover, we found that the assimilation of salinity in ocean regions with relatively strong ocean fronts is still a common problem as seen in most ORAs. The impact of the Argo data on the salinity reanalyses is visible, especially within the upper 500m, where the interannual variability is large. The increasing trend in global-averaged salinity anomalies can only be found within the top 0–300m layer, but with quite large diversity among different ORAs. Beneath the 300m depth, the global-averaged salinity anomalies from most ORAs switch their trends from a slightly growing trend before 2002 to a decreasing trend after 2002. The rapid switch in the trend is most likely an artefact of the dramatic change in the observing system due to the implementation of Argo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Wetland and Wetland CH4 Intercomparison of Models Project (WETCHIMP) was created to evaluate our present ability to simulate large-scale wetland characteristics and corresponding methane (CH4) emissions. A multi-model comparison is essential to evaluate the key uncertainties in the mechanisms and parameters leading to methane emissions. Ten modelling groups joined WETCHIMP to run eight global and two regional models with a common experimental protocol using the same climate and atmospheric carbon dioxide (CO2) forcing datasets. We reported the main conclusions from the intercomparison effort in a companion paper (Melton et al., 2013). Here we provide technical details for the six experiments, which included an equilibrium, a transient, and an optimized run plus three sensitivity experiments (temperature, precipitation, and atmospheric CO2 concentration). The diversity of approaches used by the models is summarized through a series of conceptual figures, and is used to evaluate the wide range of wetland extent and CH4 fluxes predicted by the models in the equilibrium run. We discuss relationships among the various approaches and patterns in consistencies of these model predictions. Within this group of models, there are three broad classes of methods used to estimate wetland extent: prescribed based on wetland distribution maps, prognostic relationships between hydrological states based on satellite observations, and explicit hydrological mass balances. A larger variety of approaches was used to estimate the net CH4 fluxes from wetland systems. Even though modelling of wetland extent and CH4 emissions has progressed significantly over recent decades, large uncertainties still exist when estimating CH4 emissions: there is little consensus on model structure or complexity due to knowledge gaps, different aims of the models, and the range of temporal and spatial resolutions of the models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global wetlands are believed to be climate sensitive, and are the largest natural emitters of methane (CH4). Increased wetland CH4 emissions could act as a positive feedback to future warming. The Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP) investigated our present ability to simulate large-scale wetland characteristics and corresponding CH4 emissions. To ensure inter-comparability, we used a common experimental protocol driving all models with the same climate and carbon dioxide (CO2) forcing datasets. The WETCHIMP experiments were conducted for model equilibrium states as well as transient simulations covering the last century. Sensitivity experiments investigated model response to changes in selected forcing inputs (precipitation, temperature, and atmospheric CO2 concentration). Ten models participated, covering the spectrum from simple to relatively complex, including models tailored either for regional or global simulations. The models also varied in methods to calculate wetland size and location, with some models simulating wetland area prognostically, while other models relied on remotely sensed inundation datasets, or an approach intermediate between the two. Four major conclusions emerged from the project. First, the suite of models demonstrate extensive disagreement in their simulations of wetland areal extent and CH4 emissions, in both space and time. Simple metrics of wetland area, such as the latitudinal gradient, show large variability, principally between models that use inundation dataset information and those that independently determine wetland area. Agreement between the models improves for zonally summed CH4 emissions, but large variation between the models remains. For annual global CH4 emissions, the models vary by ±40% of the all-model mean (190 Tg CH4 yr−1). Second, all models show a strong positive response to increased atmospheric CO2 concentrations (857 ppm) in both CH4 emissions and wetland area. In response to increasing global temperatures (+3.4 °C globally spatially uniform), on average, the models decreased wetland area and CH4 fluxes, primarily in the tropics, but the magnitude and sign of the response varied greatly. Models were least sensitive to increased global precipitation (+3.9 % globally spatially uniform) with a consistent small positive response in CH4 fluxes and wetland area. Results from the 20th century transient simulation show that interactions between climate forcings could have strong non-linear effects. Third, we presently do not have sufficient wetland methane observation datasets adequate to evaluate model fluxes at a spatial scale comparable to model grid cells (commonly 0.5°). This limitation severely restricts our ability to model global wetland CH4 emissions with confidence. Our simulated wetland extents are also difficult to evaluate due to extensive disagreements between wetland mapping and remotely sensed inundation datasets. Fourth, the large range in predicted CH4 emission rates leads to the conclusion that there is both substantial parameter and structural uncertainty in large-scale CH4 emission models, even after uncertainties in wetland areas are accounted for.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Do apprenticeships convey mainly general or also firm- and occupation-specific human capital? Specific human capital may allow for specialization gains, but may also lead to allocative inefficiency due to mobility barriers. We analyse the case of Switzerland, which combines a comprehensive, high-quality apprenticeship system with a lightly regulated labour market. To assess human capital transferability after standardized firm-based apprenticeship training, we analyse inter-firm and occupational mobility and their effects on post-training wages. Using a longitudinal data set based on the PISA 2000 survey, we find high inter-firm and low occupational mobility within one year after graduation. Accounting for endogenous changes, we find a negative effect of occupation changes on wages, but no significant wage effect for firm changes. This indicates that occupation-specific human capital is an important component of apprenticeship training and that skills are highly transferable within an occupational field.