804 resultados para Intelligent systems. Pipeline networks. Fuzzy logic
Resumo:
The petroleum production pipeline networks are inherently complex, usually decentralized systems. Strict operational constraints are applied in order to prevent serious problems like environmental disasters or production losses. This paper describes an intelligent system to support decisions in the operation of these networks, proposing a staggering for the pumps of transfer stations that compose them. The intelligent system is formed by blocks which interconnect to process the information and generate the suggestions to the operator. The main block of the system uses fuzzy logic to provide a control based on rules, which incorporate knowledge from experts. Tests performed in the simulation environment provided good results, indicating the applicability of the system in a real oil production environment. The use of the stagger proposed by the system allows a prioritization of the transfer in the network and a flow programming
Resumo:
The petroleum production pipeline networks are inherently complex, usually decentralized systems. Strict operational constraints are applied in order to prevent serious problems like environmental disasters or production losses. This paper describes an intelligent system to support decisions in the operation of these networks, proposing a staggering for the pumps of transfer stations that compose them. The intelligent system is formed by blocks which interconnect to process the information and generate the suggestions to the operator. The main block of the system uses fuzzy logic to provide a control based on rules, which incorporate knowledge from experts. Tests performed in the simulation environment provided good results, indicating the applicability of the system in a real oil production environment. The use of the stagger proposed by the system allows a prioritization of the transfer in the network and a flow programming
Resumo:
In t-norm based systems many-valued logic, valuations of propositions form a non-countable set: interval [0,1]. In addition, we are given a set E of truth values p, subject to certain conditions, the valuation v is v=V(p), V reciprocal application of E on [0,1]. The general propositional algebra of t-norm based many-valued logic is then constructed from seven axioms. It contains classical logic (not many-valued) as a special case. It is first applied to the case where E=[0,1] and V is the identity. The result is a t-norm based many-valued logic in which contradiction can have a nonzero degree of truth but cannot be true; for this reason, this logic is called quasi-paraconsistent.
Resumo:
This paper presents the concepts of the intelligent system for aiding of the module assembly technology. The first part of this paper presents a project of intelligent support system for computer aided assembly process planning. The second part includes a coincidence description of the chosen aspects of implementation of this intelligent system using technologies of artificial intelligence (artificial neural networks, fuzzy logic, expert systems and genetic algorithms).
Resumo:
This work presents a neural network based on the ART architecture ( adaptive resonance theory), named fuzzy ART& ARTMAP neural network, applied to the electric load-forecasting problem. The neural networks based on the ARTarchitecture have two fundamental characteristics that are extremely important for the network performance ( stability and plasticity), which allow the implementation of continuous training. The fuzzy ART& ARTMAP neural network aims to reduce the imprecision of the forecasting results by a mechanism that separate the analog and binary data, processing them separately. Therefore, this represents a reduction on the processing time and improved quality of the results, when compared to the Back-Propagation neural network, and better to the classical forecasting techniques (ARIMA of Box and Jenkins methods). Finished the training, the fuzzy ART& ARTMAP neural network is capable to forecast electrical loads 24 h in advance. To validate the methodology, data from a Brazilian electric company is used. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The main objective involved with this paper consists of presenting the results obtained from the application of artificial neural networks and statistical tools in the automatic identification and classification process of faults in electric power distribution systems. The developed techniques to treat the proposed problem have used, in an integrated way, several approaches that can contribute to the successful detection process of faults, aiming that it is carried out in a reliable and safe way. The compilations of the results obtained from practical experiments accomplished in a pilot distribution feeder have demonstrated that the developed techniques provide accurate results, identifying and classifying efficiently the several occurrences of faults observed in the feeder. © 2006 IEEE.
Resumo:
This paper refers to the design of an expert system that captures a waveform through the use of an accelerometer, processes the signal and converts it to the frequency domain using a Fast Fourier Transformer to then, using artificial intelligence techniques, specifically Fuzzy Reasoning, it determines if there is any failure present in the underlying mode of the equipment, such as imbalance, misalignment or bearing defects.
Resumo:
This paper describes the development of an experimental distributed fuzzy control system for heating and ventilation (HVAC) systems within a building. Each local control loop is affected by a number of local variables, as well as information from neighboring controllers. By including this additional information it is hoped that a more equal allocation of resources can be achieved.
Resumo:
Power system stabilizers (PSS) work well at the particular network configuration and steady state conditions for which they were designed. Once conditions change, their performance degrades. This can be overcome by an intelligent nonlinear PSS based on fuzzy logic. Such a fuzzy logic power system stabilizer (FLPSS) is developed, using speed and power deviation as inputs, and provides an auxiliary signal for the excitation system of a synchronous motor in a multimachine power system environment. The FLPSS's effect on the system damping is then compared with a conventional power system stabilizer's (CPSS) effect on the system. The results demonstrate an improved system performance with the FLPSS and also that the FLPSS is robust
Resumo:
Traffic control at road junctions is one of the major concerns in most metropolitan cities. Controllers of various approaches are available and the required control action is the effective green-time assigned to each traffic stream within a traffic-light cycle. The application of fuzzy logic provides the controller with the capability to handle uncertain natures of the system, such as drivers’ behaviour and random arrivals of vehicles. When turning traffic is allowed at the junction, the number of phases in the traffic-light cycle increases. The additional input variables inevitably complicate the controller and hence slow down the decision-making process, which is critical in this real-time control problem. In this paper, a hierarchical fuzzy logic controller is proposed to tackle this traffic control problem at a 2-way road junction with turning traffic. The two levels of fuzzy logic controllers devise the minimum effective green-time and fine-tune it respectively at each phase of a traffic-light cycle. The complexity of the controller at each level is reduced with smaller rule-set. The performance of this hierarchical controller is examined by comparison with a fixed-time controller under various traffic conditions. Substantial delay reduction has been achieved as a result and the performance and limitation of the controller will be discussed.
Resumo:
This research is a step forward in improving the accuracy of detecting anomaly in a data graph representing connectivity between people in an online social network. The proposed hybrid methods are based on fuzzy machine learning techniques utilising different types of structural input features. The methods are presented within a multi-layered framework which provides the full requirements needed for finding anomalies in data graphs generated from online social networks, including data modelling and analysis, labelling, and evaluation.