982 resultados para Intelligent Vehicle
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Wooden railway sleeper inspections in Sweden are currently performed manually by a human operator; such inspections are based on visual analysis. Machine vision based approach has been done to emulate the visual abilities of human operator to enable automation of the process. Through this process bad sleepers are identified, and a spot is marked on it with specific color (blue in the current case) on the rail so that the maintenance operators are able to identify the spot and replace the sleeper. The motive of this thesis is to help the operators to identify those sleepers which are marked by color (spots), using an “Intelligent Vehicle” which is capable of running on the track. Capturing video while running on the track and segmenting the object of interest (spot) through this vehicle; we can automate this work and minimize the human intuitions. The video acquisition process depends on camera position and source light to obtain fine brightness in acquisition, we have tested 4 different types of combinations (camera position and source light) here to record the video and test the validity of proposed method. A sequence of real time rail frames are extracted from these videos and further processing (depending upon the data acquisition process) is done to identify the spots. After identification of spot each frame is divided in to 9 regions to know the particular region where the spot lies to avoid overlapping with noise, and so on. The proposed method will generate the information regarding in which region the spot lies, based on nine regions in each frame. From the generated results we have made some classification regarding data collection techniques, efficiency, time and speed. In this report, extensive experiments using image sequences from particular camera are reported and the experiments were done using intelligent vehicle as well as test vehicle and the results shows that we have achieved 95% success in identifying the spots when we use video as it is, in other method were we can skip some frames in pre-processing to increase the speed of video but the segmentation results we reduced to 85% and the time was very less compared to previous one. This shows the validity of proposed method in identification of spots lying on wooden railway sleepers where we can compromise between time and efficiency to get the desired result.
Resumo:
In this work we propose procedures for the identification of structure of group associate lattices from fundamental region F4g of regular tessellations {4g; 4g} in the Euclidian plane and hyperbolic plane, where g denote genus of compact surface. © 2006 SBrT.
Resumo:
O reconhecimento da intenção do condutor a partir de sinais de eletroencefalografia (EEG) pode ser útil no desenvolvimento de interfaces cérebro computador (BCI) para serem usadas em sinergia com veículos inteligentes. Isso pode ser benéfico para melhorar a qualidade de interação entre o motorista e o carro, por exemplo, fornecendo uma resposta do carro inteligente alinhada com a intenção do motorista. Neste estudo, considera-se a antecipação como sendo o estado cognitivo que leva a ações especificas durante a condução de um automóvel. Portanto, propomos investigar a presença de padrões antecipatórios em sinais EEG durante a condução de veículos para determinar duas ações especifícas (1) virar à esquerda e (2) virar à direita, alguns milissegundos antes que tais ações aconteçam. Um protocolo experimental foi proposto para gravar sinais EEG de 5 indivíduos enquanto eles operam um simulador de realidade virtual não invasiva - que foi projetado para tal experimento - que simula a condução de um carro virtual. O protocolo experimental é uma variante do paradigma da variação negativa contingente (CNV) com condições Go e No-go no sistema de condução de realidade virtual. Os resultados apresentados neste estudo indicam a presença de padrões antecipatórios em potenciais corticais lentos observados no domínio do tempo (medias dos sinais EEG) e da frequência (Power Spectra e coerência de fase). Isso abre um leque de possibilidades no desenvolvimento de sistemas BCI - baseados em sinais antecipatórios - que conectem o motorista ao veiculo inteligente favorecendo uma tomada de decisão que analise as intenções dos condutores podendo eventualmente evitar acidentes durante a condução.
Resumo:
In this paper we present a method for evaluating the center density of algebraic lattices from subfields of Q(xi n), where n is a positive integer. This method allows to reproduce rotated versions of dense lattices in some dimensions. Constellations on algebraic lattices with high packing density have been proposed for use in communications in Gaussian channels and also in Rayleigh fading channels in case they have high diversity.
Resumo:
It is known that the techniques under the topic of Soft Computing have a strong capability of learning and cognition, as well as a good tolerance to uncertainty and imprecision. Due to these properties they can be applied successfully to Intelligent Vehicle Systems; ITS is a broad range of technologies and techniques that hold answers to many transportation problems. The unmannedcontrol of the steering wheel of a vehicle is one of the most important challenges facing researchers in this area. This paper presents a method to adjust automatically a fuzzy controller to manage the steering wheel of a mass-produced vehicle; to reach it, information about the car state while a human driver is handling the car is taken and used to adjust, via iterative geneticalgorithms an appropriated fuzzy controller. To evaluate the obtained controllers, it will be considered the performance obtained in the track following task, as well as the smoothness of the driving carried out.
Resumo:
The development of new-generation intelligent vehicle technologies will lead to a better level of road safety and CO2 emission reductions. However, the weak point of all these systems is their need for comprehensive and reliable data. For traffic data acquisition, two sources are currently available: 1) infrastructure sensors and 2) floating vehicles. The former consists of a set of fixed point detectors installed in the roads, and the latter consists of the use of mobile probe vehicles as mobile sensors. However, both systems still have some deficiencies. The infrastructure sensors retrieve information fromstatic points of the road, which are spaced, in some cases, kilometers apart. This means that the picture of the actual traffic situation is not a real one. This deficiency is corrected by floating cars, which retrieve dynamic information on the traffic situation. Unfortunately, the number of floating data vehicles currently available is too small and insufficient to give a complete picture of the road traffic. In this paper, we present a floating car data (FCD) augmentation system that combines information fromfloating data vehicles and infrastructure sensors, and that, by using neural networks, is capable of incrementing the amount of FCD with virtual information. This system has been implemented and tested on actual roads, and the results show little difference between the data supplied by the floating vehicles and the virtual vehicles.
Resumo:
Este documento describe una planta real dotada de un vehículo inteligente que le permite navegar por ambientes de interiores, responder a estímulos del ambiente, interactuar con seres humanos a través de realidad aumentada, detectar la presencia de fuego y solicitar ayuda por medio de Twitter. Los experimentos muestran que no hay falsos positivos en la detección de fuego, y que la detección de fuego es superior al 50% de las lecturas del sensor en distancias menores a 5 m, con línea de visión entre el sensor y la llama. La comunicación por radios XBee en ambientes de interiores es efectiva hasta por lo menos 25m de distancia entre los radios.
Resumo:
The over represented number of novice drivers involved in crashes is alarming. Driver training is one of the interventions aimed at mitigating the number of crashes that involve young drivers. To our knowledge, Advanced Driver Assistance Systems (ADAS) have never been comprehensively used in designing an intelligent driver training system. Currently, there is a need to develop and evaluate ADAS that could assess driving competencies. The aim is to develop an unsupervised system called Intelligent Driver Training System (IDTS) that analyzes crash risks in a given driving situation. In order to design a comprehensive IDTS, data is collected from the Driver, Vehicle and Environment (DVE), synchronized and analyzed. The first implementation phase of this intelligent driver training system deals with synchronizing multiple variables acquired from DVE. RTMaps is used to collect and synchronize data like GPS, vehicle dynamics and driver head movement. After the data synchronization, maneuvers are segmented out as right turn, left turn and overtake. Each maneuver is composed of several individual tasks that are necessary to be performed in a sequential manner. This paper focuses on turn maneuvers. Some of the tasks required in the analysis of ‘turn’ maneuver are: detect the start and end of the turn, detect the indicator status change, check if the indicator was turned on within a safe distance and check the lane keeping during the turn maneuver. This paper proposes a fusion and analysis of heterogeneous data, mainly involved in driving, to determine the risk factor of particular maneuvers within the drive. It also explains the segmentation and risk analysis of the turn maneuver in a drive.
Resumo:
Intelligent Transport System (ITS) technology is seen as a cost-effective way to increase the conspicuity of approaching trains and the effectiveness of train warnings at level crossings by providing an in-vehicle warning of an approaching train. The technology is often seen as a potential low-cost alternative to upgrading passive level crossings with traditional active warning systems (flashing lights and boom barriers). ITS platforms provide sensor, localization and dedicated short-range communication (DSRC) technologies to support cooperative applications such as collision avoidance for road vehicles. In recent years, in-vehicle warning systems based on ITS technology have been trialed at numerous locations around Australia, at level crossing sites with active and passive controls. While significant research has been conducted on the benefits of the technology in nominal operating modes, little research has focused on the effects of the failure modes, the human factors implications of unreliable warnings and the technology adoption process from the railway industry’s perspective. Many ITS technology suppliers originate from the road industry and often have limited awareness of the safety assurance requirements, operational requirements and legal obligations of railway operators. This paper aims to raise awareness of these issues and start a discussion on how such technology could be adopted. This paper will describe several ITS implementation cenarios and discuss failure modes, human factors considerations and the impact these scenarios are likely to have in terms of safety, railway safety assurance requirements and the practicability of meeting these requirements. The paper will identify the key obstacles impeding the adoption of ITS systems for the different implementation scenarios and a possible path forward towards the adoption of ITS technology.