985 resultados para Integer optimization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this technical report is to present some detailed explanations in order to help to understand and use the Message Passing Interface (MPI) parallel programming for solving several mixed integer optimization problems. We have developed a C++ experimental code that uses the IBM ILOG CPLEX optimizer within the COmputational INfrastructure for Operations Research (COIN-OR) and MPI parallel computing for solving the optimization models under UNIX-like systems. The computational experience illustrates how can we solve 44 optimization problems which are asymmetric with respect to the number of integer and continuous variables and the number of constraints. We also report a comparative with the speedup and efficiency of several strategies implemented for some available number of threads.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a scheme to generate clusters submodels with stage ordering from a (symmetric or a nonsymmetric one) multistage stochastic mixed integer optimization model using break stage. We consider a stochastic model in compact representation and MPS format with a known scenario tree. The cluster submodels are built by storing first the 0-1 the variables, stage by stage, and then the continuous ones, also stage by stage. A C++ experimental code has been implemented for reordering the stochastic model as well as the cluster decomposition after the relaxation of the non-anticipativiy constraints until the so-called breakstage. The computational experience shows better performance of the stage ordering in terms of elapsed time in a randomly generated testbed of multistage stochastic mixed integer problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: This study examined the daily surgical scheduling problem in a teaching hospital. This problem relates to the use of multiple operating rooms and different types of surgeons in a typical surgical day with deterministic operation durations (preincision, incision, and postincision times). Teaching hospitals play a key role in the health-care system; however, existing models assume that the duration of surgery is independent of the surgeon's skills. This problem has not been properly addressed in other studies. We analyze the case of a Spanish public hospital, in which continuous pressures and budgeting reductions entail the more efficient use of resources. Methods: To obtain an optimal solution for this problem, we developed a mixed-integer programming model and user-friendly interface that facilitate the scheduling of planned operations for the following surgical day. We also implemented a simulation model to assist the evaluation of different dispatching policies for surgeries and surgeons. The typical aspects we took into account were the type of surgeon, potential overtime, idling time of surgeons, and the use of operating rooms. Results: It is necessary to consider the expertise of a given surgeon when formulating a schedule: such skill can decrease the probability of delays that could affect subsequent surgeries or cause cancellation of the final surgery. We obtained optimal solutions for a set of given instances, which we obtained through surgical information related to acceptable times collected from a Spanish public hospital. Conclusions: We developed a computer-aided framework with a user-friendly interface for use by a surgical manager that presents a 3-D simulation of the problem. Additionally, we obtained an efficient formulation for this complex problem. However, the spread of this kind of operation research in Spanish public health hospitals will take a long time since there is a lack of knowledge of the beneficial techniques and possibilities that operational research can offer for the health-care system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper we introduce four scenario Cluster based Lagrangian Decomposition (CLD) procedures for obtaining strong lower bounds to the (optimal) solution value of two-stage stochastic mixed 0-1 problems. At each iteration of the Lagrangian based procedures, the traditional aim consists of obtaining the solution value of the corresponding Lagrangian dual via solving scenario submodels once the nonanticipativity constraints have been dualized. Instead of considering a splitting variable representation over the set of scenarios, we propose to decompose the model into a set of scenario clusters. We compare the computational performance of the four Lagrange multiplier updating procedures, namely the Subgradient Method, the Volume Algorithm, the Progressive Hedging Algorithm and the Dynamic Constrained Cutting Plane scheme for different numbers of scenario clusters and different dimensions of the original problem. Our computational experience shows that the CLD bound and its computational effort depend on the number of scenario clusters to consider. In any case, our results show that the CLD procedures outperform the traditional LD scheme for single scenarios both in the quality of the bounds and computational effort. All the procedures have been implemented in a C++ experimental code. A broad computational experience is reported on a test of randomly generated instances by using the MIP solvers COIN-OR and CPLEX for the auxiliary mixed 0-1 cluster submodels, this last solver within the open source engine COIN-OR. We also give computational evidence of the model tightening effect that the preprocessing techniques, cut generation and appending and parallel computing tools have in stochastic integer optimization. Finally, we have observed that the plain use of both solvers does not provide the optimal solution of the instances included in the testbed with which we have experimented but for two toy instances in affordable elapsed time. On the other hand the proposed procedures provide strong lower bounds (or the same solution value) in a considerably shorter elapsed time for the quasi-optimal solution obtained by other means for the original stochastic problem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider a network in which several service providers offer wireless access to their respective subscribed customers through potentially multihop routes. If providers cooperate by jointly deploying and pooling their resources, such as spectrum and infrastructure (e.g., base stations) and agree to serve each others' customers, their aggregate payoffs, and individual shares, may substantially increase through opportunistic utilization of resources. The potential of such cooperation can, however, be realized only if each provider intelligently determines with whom it would cooperate, when it would cooperate, and how it would deploy and share its resources during such cooperation. Also, developing a rational basis for sharing the aggregate payoffs is imperative for the stability of the coalitions. We model such cooperation using the theory of transferable payoff coalitional games. We show that the optimum cooperation strategy, which involves the acquisition, deployment, and allocation of the channels and base stations (to customers), can be computed as the solution of a concave or an integer optimization. We next show that the grand coalition is stable in many different settings, i.e., if all providers cooperate, there is always an operating point that maximizes the providers' aggregate payoff, while offering each a share that removes any incentive to split from the coalition. The optimal cooperation strategy and the stabilizing payoff shares can be obtained in polynomial time by respectively solving the primals and the duals of the above optimizations, using distributed computations and limited exchange of confidential information among the providers. Numerical evaluations reveal that cooperation substantially enhances individual providers' payoffs under the optimal cooperation strategy and several different payoff sharing rules.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper discusses the application of hybrid model predictive control to control switching between different burner modes in a novel compact marine boiler design. A further purpose of the present work is to point out problems with finite horizon model predictive control applied to systems for which the optimal solution is a limit cycle. Regarding the marine boiler control the aim is to find an optimal control strategy which minimizes a trade-off between deviations in boiler pressure and water level from their respective setpoints while limiting burner switches.The approach taken is based on the Mixed Logic Dynamical framework. The whole boiler systems is modelled in this framework and a model predictive controller is designed. However to facilitate on-line implementation only a small part of the search tree in the mixed integer optimization is evaluated to find out whether a switch should occur or not. The strategy is verified on a simulation model of the compact marine boiler for control of low/high burner load switches. It is shown that even though performance is adequate for some disturbance levels it becomes deteriorated when the optimal solution is a limit cycle. Copyright © 2007 International Federation of Automatic Control All Rights Reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work a mixed integer optimization linear programming (MILP) model was applied to mixed line rate (MLR) IP over WDM and IP over OTN over WDM (with and without OTN grooming) networks, with aim to reduce network energy consumption. Energy-aware and energy-aware & short-path routing techniques were used. Simulations were made based on a real network topology as well as on forecasts of traffic matrix based on statistical data from 2005 up to 2017. Energy aware routing optimization model on IPoWDM network, showed the lowest energy consumption along all years, and once compared with energy-aware & short-path routing, has led to an overall reduction in energy consumption up to 29%, expecting to save even more than shortest-path routing. © 2014 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Matemática - IBILCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work deals with a problem of mixed integer optimization model applied to production planning of a real world factory that aims for hydraulic hose production. To optimize production planning, a mathematic model of MILP Mixed Integer Linear Programming, so that, along with the Analytic Hierarchy process method, would be possible to create a hierarchical structure of the most import criteria for production planning, thus finding through a solving software the optimum hose attribution to its respective machine. The hybrid modeling of Analytic Hierarchy Process along with Linear Programming is the focus of this work. The results show that using this method we could unite factory reality and quantitative analysis and had success on improving performance of production planning efficiency regarding product delivery and optimization of the production flow

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work deals with a problem of mixed integer optimization model applied to production planning of a real world factory that aims for hydraulic hose production. To optimize production planning, a mathematic model of MILP Mixed Integer Linear Programming, so that, along with the Analytic Hierarchy process method, would be possible to create a hierarchical structure of the most import criteria for production planning, thus finding through a solving software the optimum hose attribution to its respective machine. The hybrid modeling of Analytic Hierarchy Process along with Linear Programming is the focus of this work. The results show that using this method we could unite factory reality and quantitative analysis and had success on improving performance of production planning efficiency regarding product delivery and optimization of the production flow