940 resultados para Instantaneous angular speed analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continuing monitoring of diesel engine performance is critical for early detection of fault developments in the engine before they materialize and become a functional failure. Instantaneous crank angular speed (IAS) analysis is one of a few non intrusive condition monitoring techniques that can be utilized for such tasks. In this experimental study, IAS analysis was employed to estimate the loading condition of a 4-stroke 4-cylinder diesel engine in a laboratory condition. It was shown that IAS analysis can provide useful information about engine speed variation caused by the changing piston momentum and crankshaft acceleration during the engine combustion process. It was also found that the major order component of the IAS spectrum directly associated with the engine firing frequency (at twice the mean shaft revolution speed) can be utilized to estimate the engine loading condition regardless of whether the engine is operating at normal running conditions or in a simulated faulty injector case. The amplitude of this order component follows a clear exponential curve as the loading condition changes. A mathematical relationship was established for the estimation of the engine power output based on the amplitude of the major order component of the measured IAS spectrum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continuing monitoring of diesel engine performance is critical for early detection of fault developments in the engine before they materialize and become a functional failure. Instantaneous crank angular speed (IAS) analysis is one of a few non intrusive condition monitoring techniques that can be utilized for such tasks. In this experimental study, IAS analysis was employed to estimate the loading condition of a 4-stroke 4-cylinder diesel engine in a laboratory condition. It was shown that IAS analysis can provide useful information about engine speed variation caused by the changing piston momentum and crankshaft acceleration during the engine combustion process. It was also found that the major order component of the IAS spectrum directly associated with the engine firing frequency (at twice the mean shaft revolution speed) can be utilized to estimate the engine loading condition regardless of whether the engine is operating at normal running conditions or in a simulated faulty injector case. The amplitude of this order component follows a clear exponential curve as the loading condition changes. A mathematical relationship was established for the estimation of the engine power output based on the amplitude of the major order component of the measured IAS spectrum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continuous monitoring of diesel engine performance is critical for early detection of fault developments in an engine before they materialize into a functional failure. Instantaneous crank angular speed (IAS) analysis is one of a few nonintrusive condition monitoring techniques that can be utilized for such a task. Furthermore, the technique is more suitable for mass industry deployments than other non-intrusive methods such as vibration and acoustic emission techniques due to the low instrumentation cost, smaller data size and robust signal clarity since IAS is not affected by the engine operation noise and noise from the surrounding environment. A combination of IAS and order analysis was employed in this experimental study and the major order component of the IAS spectrum was used for engine loading estimation and fault diagnosis of a four-stroke four-cylinder diesel engine. It was shown that IAS analysis can provide useful information about engine speed variation caused by changing piston momentum and crankshaft acceleration during the engine combustion process. It was also found that the major order component of the IAS spectra directly associated with the engine firing frequency (at twice the mean shaft rotating speed) can be utilized to estimate engine loading condition regardless of whether the engine is operating at healthy condition or with faults. The amplitude of this order component follows a distinctive exponential curve as the loading condition changes. A mathematical relationship was then established in the paper to estimate the engine power output based on the amplitude of this order component of the IAS spectrum. It was further illustrated that IAS technique can be employed for the detection of a simulated exhaust valve fault in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The purpose of this study was to compare the dental movement that occurs during the processing of maxillary complete dentures with 3 different base thicknesses, using 2 investment methods, and microwave polymerization.Methods: A sample of 42 denture models was randomly divided into 6 groups (n = 7), with base thicknesses of 1.25, 2.50, and 3.75 mm and gypsum or silicone flask investment. Points were demarcated on the distal surface of the second molars and on the back of the gypsum cast at the alveolar ridge level to allow linear and angular measurement using AutoCAD software. The data were subjected to analysis of variance with double factor, Tukey test and Fisher (post hoc).Results: Angular analysis of the varying methods and their interactions generated a statistical difference (P = 0.023) when the magnitudes of molar inclination were compared. Tooth movement was greater for thin-based prostheses, 1.25 mm (-0.234), versus thick 3.75 mm (0.2395), with antagonistic behavior. Prosthesis investment with silicone (0.053) showed greater vertical change compared with the gypsum investment (0.032). There was a difference between the point of analysis, demonstrating that the changes were not symmetric.Conclusions: All groups evaluated showed change in the position of artificial teeth after processing. The complete denture with a thin base (1.25 mm) and silicone investment showed the worst results, whereas intermediate thickness (2.50 mm) was demonstrated to be ideal for the denture base.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a novel differential geometric characterization of two- and three-degree-of-freedom rigid body kinematics, using a metric defined on dual vectors. The instantaneous angular and linear velocities of a rigid body are expressed as a dual velocity vector, and dual inner product is defined on this dual vector, resulting in a positive semi-definite and symmetric dual matrix. We show that the maximum and minimum magnitude of the dual velocity vector, for a unit speed motion, can be obtained as eigenvalues of this dual matrix. Furthermore, we show that the tip of the dual velocity vector lies on a dual ellipse for a two-degree-of-freedom motion and on a dual ellipsoid for a three-degree-of-freedom motion. In this manner, the velocity distribution of a rigid body can be studied algebraically in terms of the eigenvalues of a dual matrix or geometrically with the dual ellipse and ellipsoid. The second-order properties of the two- and three-degree-of-freedom motions of a rigid body are also obtained from the derivatives of the elements of the dual matrix. This results in a definition of the geodesic motion of a rigid body. The theoretical results are illustrated with the help of a spatial 2R and a parallel three-degree-of-freedom manipulator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theoretical and experimental study has been carried out on the transient characteristics of a centrifugal pump during starting and stopping periods. Experiments have been conducted on a volute pump with different valve openings to study the dynamic behaviour of the pump during normal start up and stopping, when a small length of discharge pipe line is connected to discharge flange of the pump. Similar experiments have also been conducted when the test pump was part of a hydraulic system to study the system effect on the transient characteristics. Instantaneous rotational speed, flowrate, and delivery and suction pressures of the pump are recorded and it is observed in ail the tested cases that the change of pump behaviour during the transient period is quasi-steady. The dynamic characteristics of the pump have been analysed by a numerical model using the method of characteristics. The model is presented and the results are compared with the experimental data. As the model contains speed acceleration and unsteady discharge terms, the model can be applied for analyses of purely unsteady cases where the pump dynamic characteristics show considerable departure from their steady-state characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ResumoThe main idea of this work is based on the analysis of the electric torque through the acting of the PS in the power system, provided of a control for the compensation degree (PSC). A linear model of the single machine-infinite bus system is used with a PS installed (SMIB/PS system). The variable that represents the presence of PS in the net is associated to the phase displacement introduced in the terminal voltage of the synchronous machine by PS. For the input signals of the PSC are evaluated variations of the angular speed of the rotor, the current magnitude and the active power through the line where the PS is located. The simulations are accomplished to analyze the influence of the PS in the torque formation (synchronizing and damping), of the SMIB/PS system. The analysis are developed in the time and frequency domain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unsteady boundary-layer development for thermomagnetic convection of paramagnetic fluids inside a square cavity has been considered in this study. The cavity is placed in a microgravity condition (no gravitation acceleration) and under a uniform magnetic field which acts vertically. A ramp temperature boundary condition is applied on left vertical side wall of the cavity where the temperature initially increases with time up to some specific time and maintain constant thereafter. A distinct magnetic convection boundary layer is developed adjacent to the left vertical wall due to the effect of the magnetic body force generated on the paramagnetic fluid. An improved scaling analysis has been performed using triple-layer integral method and verified by numerical simulations. The Prandtl number has been chosen greater than unity varied over 5-100. Moreover, the effect of various values of the magnetic parameter and magnetic Rayleigh number on the fluid flow and heat transfer has been shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Jansen mechanism is a one degree-of-freedom, planar, 12-link, leg mechanism that can be used in mobile robotic applications and in gait analysis. This paper presents the kinematics and dynamics of the Jansen leg mechanism. The forward kinematics, accomplished using circle intersection method, determines the trajectories of various points on the mechanism in the chassis (stationary link) reference frame. From the foot point trajectory, the step length is shown to vary linearly while step height varies non-linearly with change in crank radius. A dynamic model for the Jansen leg mechanism is proposed using bond graph approach with modulated multiport transformers. For given ground reaction force pattern and crank angular speed, this model helps determine the motor torque profile as well as the link and joint stresses. The model can therefore be used to rate the actuator torque and in design of the hardware and controller for such a system. The kinematics of the mechanism can also be obtained from this dynamic model. The proposed model is thus a useful tool for analysis and design of systems based on the Jansen leg mechanism. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss the feasibility of wireless terahertz communications links deployed in a metropolitan area and model the large-scale fading of such channels. The model takes into account reception through direct line of sight, ground and wall reflection, as well as diffraction around a corner. The movement of the receiver is modeled by an autonomous dynamic linear system in state space, whereas the geometric relations involved in the attenuation and multipath propagation of the electric field are described by a static nonlinear mapping. A subspace algorithm in conjunction with polynomial regression is used to identify a single-output Wiener model from time-domain measurements of the field intensity when the receiver motion is simulated using a constant angular speed and an exponentially decaying radius. The identification procedure is validated by using the model to perform q-step ahead predictions. The sensitivity of the algorithm to small-scale fading, detector noise, and atmospheric changes are discussed. The performance of the algorithm is tested in the diffraction zone assuming a range of emitter frequencies (2, 38, 60, 100, 140, and 400 GHz). Extensions of the simulation results to situations where a more complicated trajectory describes the motion of the receiver are also implemented, providing information on the performance of the algorithm under a worst case scenario. Finally, a sensitivity analysis to model parameters for the identified Wiener system is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Freely flying bees were filmed as they landed on a flat, horizontal surface, to investigate the underlying visuomotor control strategies. The results reveal that (1) landing bees approach the surface at a relatively shallow descent angle; (2) they tend to hold the angular velocity of the image of the surface constant as they approach it; and (3) the instantaneous speed of descent is proportional to the instantaneous forward speed. These characteristics reflect a surprisingly simple and effective strategy for achieving a smooth landing, by which the forward and descent speeds are automatically reduced as the surface is approached and are both close to zero at touchdown. No explicit knowledge of flight speed or height above the ground is necessary. A model of the control scheme is developed and its predictions are verified. It is also shown that, during landing, the bee decelerates continuously and in such a way as to keep the projected time to touchdown constant as the surface is approached. The feasibility of this landing strategy is demonstrated by implementation in a robotic gantry equipped with vision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present measurements of the non-linear oscillations of a portal frame foundation for a non-ideal motor. We consider a three-time redundant structure with two columns, clamped in their bases and a horizontal beam. An electrical unbalanced motor is mounted at mid span of the beam. Two non-linear phenomena are studied: a) mode saturation and energy transfer between modes; b) interaction between high amplitude motions of the structure and the rotation regime of a real limited power motor. The dynamic characteristics of the structure were chosen to have one-to-two internal resonance between the anti-symmetrical mode (sway motions) and the first symmetrical mode natural frequencies. As the excitation frequency reaches near resonance conditions with the 2nd natural frequency, the amplitude of this mode grows up to a certain level and then it saturates. The surplus energy pumped into the system is transferred to the sway mode, which experiences a sudden increase in its amplitude. Energy is transformed from low amplitude high frequency motion into high amplitude low frequency motion. Such a transformation is potentially dangerous.We consider the fact that real motors, such as the one used in this study, have limited power output. In this case, this energy source is said to be non-ideal, in contrast to the ideal source whose amplitude and frequency are independent of the motion of the structure. Our experimental research detected the Sommerfeld Effect: as the motor accelerates to reach near resonant conditions, a considerable part of its output energy is consumed to generate large amplitude motions of the structure and not to increase its own angular speed. For certain parameters of the system, the motor can get stuck at resonance not having enough power to reach higher rotation regimes. If some more power is available, jump phenomena may occur from near resonance to considerably higher motor speed regimes, no stable motions being possible between these two.