975 resultados para Inibidores para CO2
Resumo:
The efficiency of inhibition to corrosion of steel AISI 1018 of surfactant coconut oil saponified (SCO) and heterocyclic type mesoionics (1,3,4-triazólio-2-tiolato) in systems microemulsionados (SCO-ME and SCO-ME-MI) Of type O/A (rich in water emulsion) region with the work of Winsor IV. The systems microemulsionados (SCO-ME and SCO-ME-MI) were evaluated with a corrosion inhibitor for use in saline 10,000 ppm of chloride enriched with carbon dioxide (CO2). The assessment of corrosion inhibitors were evaluated by the techniques of linear polarization resistance (LPR) and loss of weight (MW) in a cell instrumented given the gravity and electrochemical devices. The systems were shooting speed of less than 60 minutes and efficiency of inhibition [SCO-ME (91.25%) and SCO-ME-MI (98.54%)]
Resumo:
The efficiency of inhibition to corrosion of steel AISI 1018 of surfactant coconut oil saponified (SCO) and heterocyclic type mesoionics (1,3,4-triazólio-2-tiolato) in systems microemulsionados (SCO-ME and SCO-ME-MI) Of type O/A (rich in water emulsion) region with the work of Winsor IV. The systems microemulsionados (SCO-ME and SCO-ME-MI) were evaluated with a corrosion inhibitor for use in saline 10,000 ppm of chloride enriched with carbon dioxide (CO2). The assessment of corrosion inhibitors were evaluated by the techniques of linear polarization resistance (LPR) and loss of weight (MW) in a cell instrumented given the gravity and electrochemical devices. The systems were shooting speed of less than 60 minutes and efficiency of inhibition [SCO-ME (91.25%) and SCO-ME-MI (98.54%)]
Resumo:
2016
Resumo:
The main problem on the exploration activity on petroleum industry is the formation water resulted on the fields producing. The aggravating of this problem is correlated with the advancing technologies used on the petroleum extractions and on its secondary approach objecting the reobtainment of this oil. Among the main contaminants of the water formation are corrosives gases such as: O2, CO2 and H2S, some solids in suspension and dissolved salts. Concerning to those gases the CO2 is the one that produce significant damage for carbon steel on corrosion process of the petroleum and gas industries. Corrosion inhibitors for carbon steel in formation water is one of the most used agents in control of those damages. In this context, the poor investigations of carbon steel corrosion proceeding from solids in suspension is an opened field for studies. On this work the inhibitor effect of the commercial CORRTREAT 703 was evaluated on some specific solids in suspension at saline medium containing 10.000 ppm of de-aerated chloride using CO2 until non oxygen atmosphere been present. For that, quartz, calcium carbonate, magnetite and iron sulphide were subjected to this investigation as the selected solids. The effect of this inhibitor on corrosion process correlated with those specific solids, was measured using electrochemical (resistance of linear polarization and galvanic pair) and gravimetrical techniques. During all the experimental work important parameters were monitored such as: pH, dissolved oxygen, temperature, instantaneous corrosion rate and galvanic current. According to the obtained results it was proved that the suspension solids calcium carbonate and iron sulphide decrease the corrosion process in higher pH medium. Meanwhile the quartz and magnetite been hardness increase corrosion by broking of the passive layer for erosion. In the other hand, the tested inhibitor in concentration of 50 ppm, showed to be effective (91%) in this corrosion process
Resumo:
Well-maintained lawns are comfortable and safe places for leisure activities and sports practice, and they also bring environmental benefits; for example, they reduce soil exposure to erosion and releases atmospheric CO2, thus reducing the greenhouse effect. However, regardless of the purpose of use or the choice of the plant species to form the lawn, the highest costs involve cutting that is needed to keep the turfgrass at its appropriate height. Successive lawn cutting operations are necessary basically because of the vegetative and reproductive growth of turfgrass which, in Brazil, occurs mainly from October to March. Expenditures with successive mechanical cuttings have fostered the search of alternative procedures to keep lawn plants at appropriate height, such as the use of plant growth inhibitors, an increasingly interesting procedure. Since the use of this technology in Brazil is still at its early stage, the aim of this literature review is to examine aspects associated with lawn management by using growth inhibitors. Another alternative is to increase the knowledge of the classification and rational application of the different compounds currently available in the market.
Resumo:
The main problem on the exploration activity on petroleum industry is the formation water resulted on the fields producing. The aggravating of this problem is correlated with the advancing technologies used on the petroleum extractions and on its secondary approach objecting the reobtainment of this oil. Among the main contaminants of the water formation are corrosives gases such as: O2, CO2 and H2S, some solids in suspension and dissolved salts. Concerning to those gases the CO2 is the one that produce significant damage for carbon steel on corrosion process of the petroleum and gas industries. Corrosion inhibitors for carbon steel in formation water is one of the most used agents in control of those damages. In this context, the poor investigations of carbon steel corrosion proceeding from solids in suspension is an opened field for studies. On this work the inhibitor effect of the commercial CORRTREAT 703 was evaluated on some specific solids in suspension at saline medium containing 10.000 ppm of de-aerated chloride using CO2 until non oxygen atmosphere been present. For that, quartz, calcium carbonate, magnetite and iron sulphide were subjected to this investigation as the selected solids. The effect of this inhibitor on corrosion process correlated with those specific solids, was measured using electrochemical (resistance of linear polarization and galvanic pair) and gravimetrical techniques. During all the experimental work important parameters were monitored such as: pH, dissolved oxygen, temperature, instantaneous corrosion rate and galvanic current. According to the obtained results it was proved that the suspension solids calcium carbonate and iron sulphide decrease the corrosion process in higher pH medium. Meanwhile the quartz and magnetite been hardness increase corrosion by broking of the passive layer for erosion. In the other hand, the tested inhibitor in concentration of 50 ppm, showed to be effective (91%) in this corrosion process
Resumo:
Australian climate, soils and agricultural management practices are significantly different from those of the northern hemisphere nations. Consequently, experimental data on greenhouse gas production from European and North American agricultural soils and its interpretation are unlikely to be directly applicable to Australian systems.
Resumo:
Greenhouse gas emissions from a well established, unfertilized tropical grass-legume pasture were monitored over two consecutive years using high resolution automatic sampling. Nitrous oxide emissions were highest during the summer months and were highly episodic, related more to the size and distribution of rain events than WFPS alone. Mean annual emissions were significantly higher during 2008 (5.7 ± 1.0 g N2O-N/ha/day) than 2007 (3.9 ± 0.4 and g N2O-N/ha/day) despite receiving nearly 500 mm less rain. Mean CO2 (28.2 ± 1.5 kg CO2 C/ha/day) was not significantly different (P < 0.01) between measurement years, emissions being highly dependent on temperature. A negative correlation between CO2 and WFPS at >70% indicated a threshold for soil conditions favouring denitrification. The use of automatic chambers for high resolution greenhouse gas sampling can greatly reduce emission estimation errors associated with temperature and WFPS changes.
Resumo:
Raman spectrum of burgessite, Co2(H2O)4[AsO3OH]2.H2O was studied, interpreted and compared with its infrared spectrum. The stretching and bending vibrations of (AsO3) and As-OH units together with the stretching, bending and libration modes of water molecules and hydroxyl ions were assigned. The range of O-H...O hydrogen bond lengths was inferred from the Raman and infrared spectra of burgessite. The presence of (AsO3OH)2- units in the crystal structure of burgessite was proved in agreement with its recently solved crystal structure. Raman and infrared spectra of erythrite inferred from the RRUFF database are used for comparison.
Resumo:
Abstract As regional and continental carbon balances of terrestrial ecosystems become available, it becomes clear that the soils are the largest source of uncertainty. Repeated inventories of soil organic carbon (SOC) organized in soil monitoring networks (SMN) are being implemented in a number of countries. This paper reviews the concepts and design of SMNs in ten countries, and discusses the contribution of such networks to reducing the uncertainty of soil carbon balances. Some SMNs are designed to estimate country-specific land use or management effects on SOC stocks, while others collect soil carbon and ancillary data to provide a nationally consistent assessment of soil carbon condition across the major land-use/soil type combinations. The former use a single sampling campaign of paired sites, while for the latter both systematic (usually grid based) and stratified repeated sampling campaigns (5–10 years interval) are used with densities of one site per 10–1,040 km². For paired sites, multiple samples at each site are taken in order to allow statistical analysis, while for the single sites, composite samples are taken. In both cases, fixed depth increments together with samples for bulk density and stone content are recommended. Samples should be archived to allow for re-measurement purposes using updated techniques. Information on land management, and where possible, land use history should be systematically recorded for each site. A case study of the agricultural frontier in Brazil is presented in which land use effect factors are calculated in order to quantify the CO2 fluxes from national land use/management conversion matrices. Process-based SOC models can be run for the individual points of the SMN, provided detailed land management records are available. These studies are still rare, as most SMNs have been implemented recently or are in progress. Examples from the USA and Belgium show that uncertainties in SOC change range from 1.6–6.5 Mg C ha−1 for the prediction of SOC stock changes on individual sites to 11.72 Mg C ha−1 or 34% of the median SOC change for soil/land use/climate units. For national SOC monitoring, stratified sampling sites appears to be the most straightforward attribution of SOC values to units with similar soil/land use/climate conditions (i.e. a spatially implicit upscaling approach). Keywords Soil monitoring networks - Soil organic carbon - Modeling - Sampling design
Resumo:
Biochars produced by slow pyrolysis of greenwaste (GW), poultry litter (PL), papermill waste (PS), and biosolids (BS) were shown to reduce N2O emissions from an acidic Ferrosol. Similar reductions were observed for the untreated GW feedstock. Soil was amended with biochar or feedstock giving application rates of 1 and 5%. Following an initial incubation, nitrogen (N) was added at 165 kg/ha as urea. Microcosms were again incubated before being brought to 100% water-filled porosity and held at this water content for a further 47 days. The flooding phase accounted for the majority (<80%) of total N2O emissions. The control soil released 3165 mg N2O-N/m2, or 15.1% of the available N as N2O. Amendment with 1 and 5% GW feedstock significantly reduced emissions to 1470 and 636 mg N2O-N/m2, respectively. This was equivalent to 8.6 and 3.8% of applied N. The GW biochar produced at 350°C was least effective in reducing emissions, resulting in 1625 and 1705 mg N2O-N/m2 for 1 and 5% amendments. Amendment with BS biochar at 5% had the greatest impact, reducing emissions to 518 mg N2O-N/m2, or 2.2% of the applied N over the incubation period. Metabolic activity as measured by CO2 production could not explain the differences in N2O emissions between controls and amendments, nor could NH4+ or NO3– concentrations in biochar-amended soils. A decrease in NH4+ and NO3– following GW feedstock application is likely to have been responsible for reducing N2O emissions from this amendment. Reduction in N2O emissions from the biochar-amended soils was attributed to increased adsorption of NO3–. Small reductions are possible due to improved aeration and porosity leading to lower levels of denitrification and N2O emissions. Alternatively, increased pH was observed, which can drive denitrification through to dinitrogen during soil flooding.
Resumo:
The reduction of CO2 emissions and social exclusion are two key elements of UK transport strategy. Despite intensive research on each theme, little effort has so far been made linking the relationship between emissions and social exclusion. In addition, current knowledge on each theme is limited to urban areas; little research is available on these themes for rural areas. This research contributes to this gap in the literature by analysing 157 weekly activity-travel diary data collected from three case study areas with differential levels of area accessibility and area mobility options, located in rural Northern Ireland. Individual weekly CO2 emission levels from personal travel diaries (both hot exhaust emission and cold-start emission) were calculated using average speed models for different modes of transport. The socio-spatial patterns associated with CO2 emissions were identified using a general linear model whereas binary logistic regression analyses were conducted to identify mode choice behaviour and activity patterns. This research found groups that emitted a significantly lower level of CO2 included individuals living in an area with a higher level of accessibility and mobility, non-car, non-working, and low-income older people. However, evidence in this research also shows that although certain groups (e.g. those working, and residing in an area with a lower level of accessibility) emitted higher levels of CO2, their rate of participation in activities was however found to be significantly lower compared to their counterparts. Based on the study findings, this research highlights the need for both soft (e.g. teleworking) and physical (e.g. accessibility planning) policy measures in rural areas in order to meet government’s stated CO2 reduction targets while at the same time enhancing social inclusion.
Resumo:
Australian climate, soils and agricultural management practices are significantly different from those of the northern hemisphere nations. Consequently, experimental data on greenhouse gas production from European and North American agricultural soils and its interpretation are unlikely to be directly applicable to Australian systems. A programme of studies of non-CO2 greenhouse gas emissions from agriculture has been established that is designed to reduce uncertainty of non-CO2 greenhouse gas emissions in the Australian National Greenhouse Gas Inventory and provide outputs that will enable better on-farm management practices for reducing non-CO2 greenhouse gas emissions, particularly nitrous oxide. The systems being examined and their locations are irrigated pasture (Kyabram Victoria), irrigated cotton (Narrabri, NSW), irrigated maize (Griffith, NSW), rain-fed wheat (Rutherglen, Victoria) and rain-fed wheat (Cunderdin, WA). The field studies include treatments with and without fertilizer addition, stubble burning versus stubble retention, conventional cultivation versus direct drilling and crop rotation to determine emission factors and treatment possibilities for best management options. The data to date suggest that nitrous oxide emissions from nitrogen fertilizer, applied to irrigated dairy pastures and rain-fed winter wheat, appear much lower than the average of northern hemisphere grain and pasture studies. More variable emissions have been found in studies of irrigated cotton/vetch/wheat rotation and substantially higher emissions from irrigated maize.