997 resultados para Information cards
Resumo:
A família de especificações WS-* define um modelo de segurança para web services, baseado nos conceitos de claim, security token e Security Token Service (STS). Neste modelo, a informação de segurança dos originadores de mensagens (identidade, privilégios, etc.) é representada através de conjuntos de claims, contidos dentro de security tokens. A emissão e obtenção destes security tokens, por parte dos originadores de mensagens, são realizadas através de protocolos legados ou através de serviços especiais, designados de Security Token Services, usando as operações e os protocolos definidos na especificação WS-Trust. O conceito de Security Token Service não é usado apenas no contexto dos web services. Propostas como o modelo dos Information Cards, aplicável no contexto de aplicações web, também utilizam este conceito. Os Security Token Services desempenham vários papéis, dependendo da informação presente no token emitido. São exemplos o papel de Identity Provider, quando os tokens emitidos contêm informação de identidade, ou o papel de Policy Decision Point, quando os tokens emitidos definem autorizações. Este documento descreve o projecto duma biblioteca software para a realização de Security Token Services, tal como definidos na norma WS-Trust, destinada à plataforma .NET 3.5. Propõem-se uma arquitectura flexível e extensível, de forma a suportar novas versões das normas e as diversas variantes que os Security Token Services possuem, nomeadamente: o tipo dos security token emitidos e das claims neles contidas, a inferência das claims e os métodos de autenticação das entidades requerentes. Apresentam-se aspectos de implementação desta arquitectura, nomeadamente a integração com a plataforma WCF, a sua extensibilidade e o suporte a modelos e sistemas externos à norma. Finalmente, descrevem-se as plataformas de teste implementadas para a validação da biblioteca realizada e os módulos de extensão da biblioteca para: suporte do modelo associado aos Information Cards, do modelo OpenID e para a integração com o Authorization Manager.
Resumo:
Background: Improving the transparency of information about the quality of health care providers is one way to improve health care quality. It is assumed that Internet information steers patients toward better-performing health care providers and will motivate providers to improve quality. However, the effect of public reporting on hospital quality is still small. One of the reasons is that users find it difficult to understand the formats in which information is presented. Objective: We analyzed the presentation of risk-adjusted mortality rate (RAMR) for coronary angiography in the 10 most commonly used German public report cards to analyze the impact of information presentation features on their comprehensibility. We wanted to determine which information presentation features were utilized, were preferred by users, led to better comprehension, and had similar effects to those reported in evidence-based recommendations described in the literature. Methods: The study consisted of 5 steps: (1) identification of best-practice evidence about the presentation of information on hospital report cards; (2) selection of a single risk-adjusted quality indicator; (3) selection of a sample of designs adopted by German public report cards; (4) identification of the information presentation elements used in public reporting initiatives in Germany; and (5) an online panel completed an online questionnaire that was conducted to determine if respondents were able to identify the hospital with the lowest RAMR and if respondents’ hospital choices were associated with particular information design elements. Results: Evidence-based recommendations were made relating to the following information presentation features relevant to report cards: evaluative table with symbols, tables without symbols, bar charts, bar charts without symbols, bar charts with symbols, symbols, evaluative word labels, highlighting, order of providers, high values to indicate good performance, explicit statements of whether high or low values indicate good performance, and incomplete data (“N/A” as a value). When investigating the RAMR in a sample of 10 hospitals’ report cards, 7 of these information presentation features were identified. Of these, 5 information presentation features improved comprehensibility in a manner reported previously in literature. Conclusions: To our knowledge, this is the first study to systematically analyze the most commonly used public reporting card designs used in Germany. Best-practice evidence identified in international literature was in agreement with 5 findings about German report card designs: (1) avoid tables without symbols, (2) include bar charts with symbols, (3) state explicitly whether high or low values indicate good performance or provide a “good quality” range, (4) avoid incomplete data (N/A given as a value), and (5) rank hospitals by performance. However, these findings are preliminary and should be subject of further evaluation. The implementation of 4 of these recommendations should not present insurmountable obstacles. However, ranking hospitals by performance may present substantial difficulties.
Resumo:
Ubiquitous access to patient medical records is an important aspect of caring for patient safety. Unavailability of sufficient medical information at the point-ofcare could possibly lead to a fatality. The U.S. Institute of Medicine has reported that between 44,000 and 98,000 people die each year due to medical errors, such as incorrect medication dosages, due to poor legibility in manual records, or delays in consolidating needed information to discern the proper intervention. In this research we propose employing emergent technologies such as Java SIM Cards (JSC), Smart Phones (SP), Next Generation Networks (NGN), Near Field Communications (NFC), Public Key Infrastructure (PKI), and Biometric Identification to develop a secure framework and related protocols for ubiquitous access to Electronic Health Records (EHR). A partial EHR contained within a JSC can be used at the point-of-care in order to help quick diagnosis of a patient’s problems. The full EHR can be accessed from an Electronic Health Records Centre (EHRC) when time and network availability permit. Moreover, this framework and related protocols enable patients to give their explicit consent to a doctor to access their personal medical data, by using their Smart Phone, when the doctor needs to see or update the patient’s medical information during an examination. Also our proposed solution would give the power to patients to modify the Access Control List (ACL) related to their EHRs and view their EHRs through their Smart Phone. Currently, very limited research has been done on using JSCs and similar technologies as a portable repository of EHRs or on the specific security issues that are likely to arise when JSCs are used with ubiquitous access to EHRs. Previous research is concerned with using Medicare cards, a kind of Smart Card, as a repository of medical information at the patient point-of-care. However, this imposes some limitations on the patient’s emergency medical care, including the inability to detect the patient’s location, to call and send information to an emergency room automatically, and to interact with the patient in order to get consent. The aim of our framework and related protocols is to overcome these limitations by taking advantage of the SIM card and the technologies mentioned above. Briefly, our framework and related protocols will offer the full benefits of accessing an up-to-date, precise, and comprehensive medical history of a patient, whilst its mobility will provide ubiquitous access to medical and patient information everywhere it is needed. The objective of our framework and related protocols is to automate interactions between patients, healthcare providers and insurance organisations, increase patient safety, improve quality of care, and reduce the costs.
Resumo:
Ubiquitous access to patient medical records is an important aspect of caring for patient safety. Unavailability of sufficient medical information at the patient point-of-care could possibly lead to a fatality. In this paper we propose employing emergent technologies such as Java SIM Cards (JSC),Smart Phones (SP), Next Generation Networks (NGN), Near Field Communications (NFC), Public Key Infrastructure (PKI), and Biometric Identification to develop a secure framework and related protocols for ubiquitous access to Electronic Health Records (EHRs). A partial EHR contained within a JSC can be used at the patient point-of-care in order to help quick diagnosis of a patient’s problems. The full EHR can be accessed from an Electronic Healthcare Records Centre (EHRC).
Resumo:
Dwell time at the busway station has a significant effect on bus capacity and delay. Dwell time has conventionally been estimated using models developed on the basis of field survey data. However field survey is resource and cost intensive, so dwell time estimation based on limited observations can be somewhat inaccurate. Most public transport systems are now equipped with Automatic Passenger Count (APC) and/or Automatic Fare Collection (AFC) systems. AFC in particular reduces on-board ticketing time, driver’s work load and ultimately reduces bus dwell time. AFC systems can record all passenger transactions providing transit agencies with access to vast quantities of data. AFC data provides transaction timestamps, however this information differs from dwell time because passengers may tag on or tag off at times other than when doors open and close. This research effort contended that models could be developed to reliably estimate dwell time distributions when measured distributions of transaction times are known. Development of the models required calibration and validation using field survey data of actual dwell times, and an appreciation of another component of transaction time being bus time in queue. This research develops models for a peak period and off peak period at a busway station on the South East Busway (SEB) in Brisbane, Australia.
Resumo:
Review question/objective What are the most effective information sharing strategies used to reduce anxiety in families of patients undergoing elective surgery? This review seeks to synthesize the best available evidence in relation to the most effective information-sharing intervention to reduce anxiety for families waiting for patients undergoing an elective surgical procedure. The specific objectives are to review the effectiveness of evidence of interventions designed to reduce the anxiety of families waiting whilst their loved one undergoes a surgical intervention. A variety of interventions exist and include surgical nurse liaison services, intraoperative reporting either by face-to-face or telephone delivery, informational cards, visual information screens, and intraoperative paging devices for families. Inclusion criteria Types of participants All studies of family members over 18 years of age waiting for patients undergoing an elective surgical procedure will be included, including those waiting for both adult and paediatric patients. Studies of families waiting for other patient populations, eg emergency surgery, chemotherapy or intensive care patients will be excluded. Types of intervention(s)/phenomena of interest All information-sharing Interventions for families of patients undergoing an elective surgical procedure will be included, including but not limited to: surgical nurse liaison services, in-person intraoperative reporting, visual information screens, paging devices, informational cards and telephone delivery of intraoperative progress reports. Interventions that take place during the intraoperative phase of care only will be included in the review. Preadmission information sharing interventions will be excluded. Types of outcomes The outcomes of interest include: Primary outcome: the level of anxiety amongst family members or close relatives whilst waiting for patients undergoing surgery, as measured by a validated instrument (such as the S-Anxiety portion of the State-Trait Anxiety Inventory).4 Secondary outcomes: family satisfaction and other measurements that may be considered indicators of stress and anxiety, such as mean arterial pressure (MAP) and heart rate.
Resumo:
Digital Image
Resumo:
Throughout the twentieth century statistical methods have increasingly become part of experimental research. In particular, statistics has made quantification processes meaningful in the soft sciences, which had traditionally relied on activities such as collecting and describing diversity rather than timing variation. The thesis explores this change in relation to agriculture and biology, focusing on analysis of variance and experimental design, the statistical methods developed by the mathematician and geneticist Ronald Aylmer Fisher during the 1920s. The role that Fisher’s methods acquired as tools of scientific research, side by side with the laboratory equipment and the field practices adopted by research workers, is here investigated bottom-up, beginning with the computing instruments and the information technologies that were the tools of the trade for statisticians. Four case studies show under several perspectives the interaction of statistics, computing and information technologies, giving on the one hand an overview of the main tools – mechanical calculators, statistical tables, punched and index cards, standardised forms, digital computers – adopted in the period, and on the other pointing out how these tools complemented each other and were instrumental for the development and dissemination of analysis of variance and experimental design. The period considered is the half-century from the early 1920s to the late 1960s, the institutions investigated are Rothamsted Experimental Station and the Galton Laboratory, and the statisticians examined are Ronald Fisher and Frank Yates.
Resumo:
We present an application and sample independent method for the automatic discrimination of noise and signal in optical coherence tomography Bscans. The proposed algorithm models the observed noise probabilistically and allows for a dynamic determination of image noise parameters and the choice of appropriate image rendering parameters. This overcomes the observer variability and the need for a priori information about the content of sample images, both of which are challenging to estimate systematically with current systems. As such, our approach has the advantage of automatically determining crucial parameters for evaluating rendered image quality in a systematic and task independent way. We tested our algorithm on data from four different biological and nonbiological samples (index finger, lemon slices, sticky tape, and detector cards) acquired with three different experimental spectral domain optical coherence tomography (OCT) measurement systems including a swept source OCT. The results are compared to parameters determined manually by four experienced OCT users. Overall, our algorithm works reliably regardless of which system and sample are used and estimates noise parameters in all cases within the confidence interval of those found by observers.
Resumo:
Shading reduces the power output of a photovoltaic (PV) system. The design engineering of PV systems requires modeling and evaluating shading losses. Some PV systems are affected by complex shading scenes whose resulting PV energy losses are very difficult to evaluate with current modeling tools. Several specialized PV design and simulation software include the possibility to evaluate shading losses. They generally possess a Graphical User Interface (GUI) through which the user can draw a 3D shading scene, and then evaluate its corresponding PV energy losses. The complexity of the objects that these tools can handle is relatively limited. We have created a software solution, 3DPV, which allows evaluating the energy losses induced by complex 3D scenes on PV generators. The 3D objects can be imported from specialized 3D modeling software or from a 3D object library. The shadows cast by this 3D scene on the PV generator are then directly evaluated from the Graphics Processing Unit (GPU). Thanks to the recent development of GPUs for the video game industry, the shadows can be evaluated with a very high spatial resolution that reaches well beyond the PV cell level, in very short calculation times. A PV simulation model then translates the geometrical shading into PV energy output losses. 3DPV has been implemented using WebGL, which allows it to run directly from a Web browser, without requiring any local installation from the user. This also allows taken full benefits from the information already available from Internet, such as the 3D object libraries. This contribution describes, step by step, the method that allows 3DPV to evaluate the PV energy losses caused by complex shading. We then illustrate the results of this methodology to several application cases that are encountered in the world of PV systems design. Keywords: 3D, modeling, simulation, GPU, shading, losses, shadow mapping, solar, photovoltaic, PV, WebGL
Resumo:
bottom negative on strip
Resumo:
"FTA-MA-26-0020-95-1."