1000 resultados para Infectious process
Resumo:
SUMMARY The aim of this study was to evaluate the effects of the protein-calorie malnutrition in BALB/c isogenic mice infected with Lacazia loboi, employing nutritional and histopathological parameters. Four groups were composed: G1: inoculated with restricted diet, G2: not inoculated with restricted diet, G3: inoculated with regular diet, G4: not inoculated with regular diet. Once malnutrition had been imposed, the animals were inoculated intradermally in the footpad and after four months, were sacrificed for the excision of the footpad, liver and spleen. The infection did not exert great influence on the body weight of the mice. The weight of the liver and spleen showed reduction in the undernourished groups when compared to the nourished groups. The macroscopic lesions, viability index and total number of fungi found in the footpads of the infected mice were increased in G3 when compared to G1. Regarding the histopathological analysis of the footpad, a global cellularity increase in the composition of the granuloma was observed in G3 when compared to G1, with large numbers of macrophages and multinucleated giant cells, discrete numbers of lymphocytes were present in G3 and an increase was observed in G1. The results suggest that there is considerable interaction between Jorge Lobo's disease and nutrition.
Resumo:
Paracoccidioides brasiliensis causes paracoccidioidomycosis (PCM), a systemic mycosis presenting clinical manifestations ranging from mild to severe forms. A P. brasiliensis cDNA expression library was produced and screened with pooled sera from PCM patients adsorbed against antigens derived from in vitro-grown P. brasiliensis yeast cells. Sequencing DNA inserts from clones reactive with PCM patients sera indicated 35 open reading frames presenting homology to genes involved in metabolic pathways, transport, among other predicted functions. The complete cDNAs encoding aromatic-L-amino-acid decarboxylase (Pbddc), lumazine synthase (Pbls) and a homologue of the high affinity copper transporter (Pbctr3) were obtained. Recombinant proteins PbDDC and PbLS were obtained; a peptide was synthesized for PbCTR3. The proteins and the synthetic peptide were recognized by sera of patients with confirmed PCM and not by sera of healthy patients. Using the in vivo-induced antigen technology (IVIAT), we identified immunogenic proteins expressed at high levels during infection. Quantitative real time RTPCR demonstrated high transcript levels of Pbddc, Pbls and Pbctr3 in yeast cells infecting macrophages. Transcripts in yeast cells derived from spleen and liver of infected mice were also measured by qRT-PCR. Our results suggest a putative role for the immunogenic proteins in the infectious process of P. brasiliensis. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
Multiloculated hydrocephalus is a clinicopathological entity consisting of enlarged, loculated ventricles and paraventricular poroencephalic cavities. We present two cases of multiloculated hydrocephalus: one due to infectious process of central nervous system and the other consequent to a congenital malformation. Tomographic aspects of this condition that permit the diagnosis are stressed. The pathophysiology, the management and the prognosis are discussed according to the available literature.
Resumo:
Background: Cutaneous mycoses are common human infections among healthy and immunocompromised hosts, and the anthropophilic fungus Trichophyton rubrum is the most prevalent microorganism isolated from such clinical cases worldwide. The aim of this study was to determine the transcriptional profile of T. rubrum exposed to various stimuli in order to obtain insights into the responses of this pathogen to different environmental challenges. Therefore, we generated an expressed sequence tag (EST) collection by constructing one cDNA library and nine suppression subtractive hybridization libraries. Results: The 1388 unigenes identified in this study were functionally classified based on the Munich Information Center for Protein Sequences (MIPS) categories. The identified proteins were involved in transcriptional regulation, cellular defense and stress, protein degradation, signaling, transport, and secretion, among other functions. Analysis of these unigenes revealed 575 T. rubrum sequences that had not been previously deposited in public databases. Conclusion: In this study, we identified novel T. rubrum genes that will be useful for ORF prediction in genome sequencing and facilitating functional genome analysis. Annotation of these expressed genes revealed metabolic adaptations of T. rubrum to carbon sources, ambient pH shifts, and various antifungal drugs used in medical practice. Furthermore, challenging T. rubrum with cytotoxic drugs and ambient pH shifts extended our understanding of the molecular events possibly involved in the infectious process and resistance to antifungal drugs.
Resumo:
Although the serum levels of SAA had been reported to be upregulated during inflammatory/infectious process, the role of this acute-phase protein has not been completely elucidated. In previous studies, we demonstrated that SAA stimulated the production of TNF-alpha, IL-1 beta, IL-8, NO, and ROS by neutrophils and/or mononuclear cells. Herein we demonstrate that SAA induces the expression and release of CCL20 from Cultured human blood mononuclear cells. We also focus on the signaling pathways triggered by SAA. in THP-1 cells SAA promotes phosphorylation of p38 and ERK1/2. Furthermore, the addition of SB203580 (p38 inhibitor) and PD98059 (ERK 1/2 inhibitor) inhibits the expression and release of CCL20 in mononuclear cells treated with SAA. Our results point to SAA as an important link of innate to adaptive immunity, once it might act on the recruitment of mononuclear cells. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Paracoccidioides brasiliensis infectious process relies on the initial expression of virulence faactors that are assumed to be controlled by molecular mechanisms through which the conidia and/or mycelial fragments convert to yeast cells. In order to analyze the profile of the thermally-induced dimorphic gene expression, 48 h C-L transition cultures which had been incubated at 36 degrees C were studied. By this time approximately 50% of the conidial population had already reverted to yeast form cells. At this transition time, an EST-Orestes library was constructed and characterized. As a result, 79 sequences were obtained, of which 39 (49.4%) had not been described previously in other libraries of this fungus and which could represent novel exclusive C-Y transition genes. Two of these sequences are, among others, cholestanol delta-isomerase, and electron transfer flavoprotein-ubiquinoneoxidoreductase (ETF-QO). The other 40 (50.6%) sequences were shared with Mycelia (M), Yeast (Y) or Mycelia to yest transition (M-Y) libraries. An important component of this group of sequences is a putative response regulator receiver SKN7, a protein of high importance in stress adaptation and a regulator of virulence in some bacteria and fungi. This is the first report identifying genes expressed during the C-Y transition process, the initial step required to understand the natural history of P brasiliensis conidia induced infection.
Resumo:
This is a report of a 25 years old black woman from the city of São Paulo, Brazil, who developed acute obstructive cholangitis of Ascaris lumbricoides with septicemia and multiple hepatic abscesses. The patient had sickle cell trait and normal delivery 3 months ago. Massive infestation of the biliary tract by Ascaris lumbricoides was diagnosed by abdominal ultrasonography and endoscopic retrograde cholangiography. Sixty worms were removed from the common bile duct and hepatic abscesses were drained by surgery. The infectious process was polymicrobial. The patient's recovery was complete after a long evolution with a wide spectrum antibiotic therapy. New surgeries were needed to remove residual worms in the biliary tract. The diagnostic methods, clinical-biochemical features and also the clinical and surgical management are presented. The biliary ascariasis pathophysiology is commented.
Resumo:
Invasion of hepatocytes by Listeria monocytogenes (LM) and Salmonella Typhimurium (ST) can stimulate tumor necrosis factor alpha (TNF-α) release and induce apoptosis. In this study, we compared the behavior of hepatocytes invaded by three L. monocytogenes serotypes (LM-4a, LM-4b and LM-1/2a) and by ST to understand which bacterium is more effective in the infectious process. We quantified TNF-α release by ELISA, apoptosis rates by annexin V (early apoptosis) and TUNEL (late apoptosis) techniques. The cell morphology was studied too. TNF-α release rate was highest in ST-invaded hepatocytes. ST and LM-1/2a induced the highest apoptosis production rates evaluated by TUNEL. LM-4b produced the highest apoptosis rate measured by annexin. Invaded hepatocytes presented various morphological alterations. Overall, LM-4b and LM-1/2a proved to be the most efficient at cell invasion, although ST adapted faster to the environment and induced earlier hepatocyte TNF-α release.
Resumo:
In Brazil, a high prevalence of cytomegalovirus (CMV) infection has been documented. In immunocompetent adults CMV infection is usually asymptomatic and therefore morphologic and immunophenotypic bone marrow changes have rarely been described. The authors report the case of a previously healthy patient who developed fever of undetermined origin. The diagnosis of acute CMV infection was based on serological testing. A computed tomographic scan showed mediastinal lymphadenopathy. A bone marrow biopsy revealed a hypercellular haematopoiesis with eosinophilia and large mixed T- and B-cell lymphoid aggregates. In spite of bcl-2 positivity, their reactive nature was demonstrated. Polymerase chain reaction (PCR) and immunohistochemistry were unable to detect CMV-DNA in paraffin-embedded bone marrow sections. Much like in other systemic disorders, the lymphoid nodules in this case seemed to be caused by immunological mechanisms, possibly due to cytokines released in response to the systemic infectious process.
Resumo:
Introduction The immune response caused by Mycobacterium leprae is a risk factor for the development of oxidative stress (OS) in leprosy patients. This study aimed to assess OS in leprosy patients before the use of a multidrug therapy. Methods We evaluated the nitric oxide (NO) concentration; antioxidant capacity; levels of malondialdehyde, methemoglobin and reduced glutathione; and the activity of catalase and superoxide dismutase (SOD) in leprosy patients. Results We observed lower SOD activity in these leprosy patients; however, the NO levels and antioxidant capacity were increased. Conclusions The infectious process in response to M. leprae could primarily be responsible for the OS observed in these patients.
Resumo:
OBJECTIVE: To establish a murine experimental model of bile duct obstruction that would enable controlled observations of the acute and subacute phases of cholestasis. METHODOLOGY: Adult male isogenic BALB/c mice underwent a bile duct ligation (22 animals) or a sham operation (10 animals). Fifteen days after surgery, or immediately after the animal's death, macroscopic findings were noted and histological study of the liver, biliary tree, and pancreas was performed (hematoxylin-eosin and Masson trichromic staining). RESULTS: Beginning 24 hours after surgery, all animals from the bile duct ligation group presented progressive generalized malaise. All animals presented jaundice in the parietal and visceral peritoneum, turgid and enlarged liver, and accentuated dilatation of gallbladder and common bile duct. Microscopic findings included marked dilatation and proliferation of bile ducts with accentuated collagen deposits, frequent areas of ischemic necrosis, hepatic microabscesses, and purulent cholangitis. Animals from the sham operation group presented no alterations. CONCLUSION: We established a murine experimental model of induced cholestasis, which made it possible to study acute and subacute tissue lesions. Our data suggests that in cholestasis, hepatic functional ischemia plays an important role in inducing hepatic lesions, and it also suggests that the infectious process is an important factor in morbidity and mortality.
Resumo:
Buruli Ulcer (BU) is a necrotizing skin disease caused by Mycobacterium ulcerans infection. BU is characterized by a wide range of clinical forms, including non-ulcerative cutaneous lesions that can evolve into severe ulcers if left untreated. Nevertheless, spontaneous healing has been reported to occur, although knowledge on this process is scarce both in naturally infected humans and experimental models of infection. Animal models are useful since they mimic different spectrums of human BU disease and have the potential to elucidate the pathogenic/protective pathway(s) involved in disease/healing. In this time-lapsed study, we characterized the guinea pig, an animal model of resistance to M. ulcerans, focusing on the macroscopic, microbiological and histological evolution throughout the entire experimental infectious process. Subcutaneous infection of guinea pigs with a virulent strain of M. ulcerans led to early localized swelling, which evolved into small well defined ulcers. These macroscopic observations correlated with the presence of necrosis, acute inflammatory infiltrate and an abundant bacterial load. By the end of the infectious process when ulcerative lesions healed, M. ulcerans viability decreased and the subcutaneous tissue organization returned to its normal state after a process of continuous healing characterized by tissue granulation and reepethelialization. In conclusion, we show that the experimental M. ulcerans infection of the guinea pig mimics the process of spontaneous healing described in BU patients, displaying the potential to uncover correlates of protection against BU, which can ultimately contribute to the development of new prophylactic and therapeutic strategies.
Resumo:
OBJECTIVE: To analyze the impact of acute renal failure (ARF) on the evolution of infants undergoing cardiac surgery. METHODS: We assessed 15 infants undergoing cardiac surgery who developed (ARF). Their demographic, clinical and surgical data, and evolution were analyzed. RESULTS: Their mean age was 4.4±4.0 months (8 days to 24 months). Twelve infants were males, and 4 patients already had ARF at surgery. The primary cause of ARF was immediate acute cardiac dysfunction in 10 infants, cardiac dysfunction associated with sepsis in 2 infants, and isolated sepsis in 3 infants. All children depended on mechanical ventilation during their postoperative period, 14 infants used vasoactive drugs, and 11 had an infectious process associated with ARF. Thirteen infants required dialytic treatment. Eleven infants developed oluguric ARF, and all had to undergo peritoneal dialysis; of the 4 patients with non-oliguric, 2 required dialysis, the main indication being hypervolemia. Of these 13 dialyzed infants, 4 died in the first 24 hours because of the severity of the underlying cardiac disease (mean urea level of 49±20 mg/dl). The mortality rate for the entire group was 60% , and it was higher among the patients with oliguria ARF (73% vs 25%, p<0.001). The cause of death was acute cardiac dysfunction in 6 infants (early type-1ARF) and sepsis in the 3 remaining infants (late type-2 ARF). CONCLUSION: The mortality rate of ARF associated with cardiac surgery in infants was hight, being higher among children with oliguria; peritoneal dialysis was indicated due to clinically uncontrolled hypervolemia and not to the uremic hypercatabolic state.
Resumo:
The infectious process starts with an initial contact between pathogen and host. We have previously demonstrated that Paracoccidioides brasiliensis conidia interact with plasma proteins including fibrinogen, which is considered the major component of the coagulation system. In this study, we evaluated the in vitro capacity of P. brasiliensis conidia to aggregate with plasma proteins and compounds involved in the coagulation system. We assessed the aggregation of P. brasiliensis conidia after incubation with human serum or plasma in the presence or absence of anticoagulants, extracellular matrix (ECM) proteins, metabolic and protein inhibitors, monosaccharides and other compounds. Additionally, prothrombin and partial thromboplastin times were determined after the interaction of P. brasiliensis conidia with human plasma. ECM proteins, monosaccharides and human plasma significantly induced P. brasiliensis conidial aggregation; however, anticoagulants and metabolic and protein inhibitors diminished the aggregation process. The extrinsic coagulation pathway was not affected by the interaction between P. brasiliensis conidia and plasma proteins, while the intrinsic pathway was markedly altered. These results indicate that P. brasiliensis conidia interact with proteins involved in the coagulation system. This interaction may play an important role in the initial inflammatory response, as well as fungal disease progression caused by P. brasiliensis dissemination.