871 resultados para Indivisible objects allocation
Resumo:
We consider the allocation of a finite number of indivisible objects to the same number of agents according to an exogenously given queue. We assume that the agents collaborate in order to achieve an efficient outcome for society. We allow for side-payments and provide a method for obtaining stable outcomes.
Resumo:
We consider a probabilistic approach to the problem of assigning k indivisible identical objects to a set of agents with single-peaked preferences. Using the ordinal extension of preferences, we characterize the class of uniform probabilistic rules by Pareto efficiency, strategy-proofness, and no-envy. We also show that in this characterization no-envy cannot be replaced by anonymity. When agents are strictly risk averse von-Neumann-Morgenstern utility maximizers, then we reduce the problem of assigning k identical objects to a problem of allocating the amount k of an infinitely divisible commodity.
Resumo:
In many economic environments - such as college admissions, student placements at public schools, and university housing allocation - indivisible objects with capacity constraints are assigned to a set of agents when each agent receives at most one object and monetary compensations are not allowed. In these important applications the agent-proposing deferred-acceptance algorithm with responsive priorities (called responsive DA-rule) performs well and economists have successfully implemented responsive DA-rules or slight variants thereof. First, for house allocation problems we characterize the class of responsive DA-rules by a set of basic and intuitive properties, namely, unavailable type invariance, individual rationality, weak non-wastefulness, resource-monotonicity, truncation invariance, and strategy-proofness. We extend this characterization to the full class of allocation problems with capacity constraints by replacing resource- monotonicity with two-agent consistent con ict resolution. An alternative characterization of responsive DA-rules is obtained using unassigned objects invariance, individual rationality, weak non-wastefulness, weak consistency, and strategy-proofness. Various characterizations of the class of "acyclic" responsive DA-rules are obtained by using the properties efficiency, group strategy-proofness, and consistency.
Resumo:
We study the simple model of assigning indivisible and heterogenous objects (e.g., houses, jobs, offi ces, etc.) to agents. Each agent receives at most one object and monetary compensations are not possible. For this model, known as the house allocation model, we characterize the class of rules satisfying unavailable object invariance, individual rationality, weak non-wastefulness, resource-monotonicity, truncation invariance, and strategy-proofness: any rule with these properties must allocate objects based on (implicitly induced) objects' priorities over agents and the agent-proposing deferred-acceptance-algorithm.
Resumo:
In college admissions and student placements at public schools, the admission decision can be thought of as assigning indivisible objects with capacity constraints to a set of students such that each student receives at most one object and monetary compensations are not allowed. In these important market design problems, the agent-proposing deferred-acceptance (DA-)mechanism with responsive strict priorities performs well and economists have successfully implemented DA-mechanisms or slight variants thereof. We show that almost all real-life mechanisms used in such environments - including the large classes of priority mechanisms and linear programming mechanisms - satisfy a set of simple and intuitive properties. Once we add strategy-proofness to these properties, DA-mechanisms are the only ones surviving. In market design problems that are based on weak priorities (like school choice), generally multiple tie-breaking (MTB)procedures are used and then a mechanism is implemented with the obtained strict priorities. By adding stability with respect to the weak priorities, we establish the first normative foundation for MTB-DA-mechanisms that are used in NYC.
Resumo:
We study a simple model of assigning indivisible objects (e.g., houses, jobs, offices, etc.) to agents. Each agent receives at most one object and monetary compensations are not possible. We completely describe all rules satisfying efficiency and resource-monotonicity. The characterized rules assign the objects in a sequence of steps such that at each step there is either a dictator or two agents "trade" objects from their hierarchically specified "endowments."
Resumo:
We study a simple model of assigning indivisible objects (e.g., houses, jobs, offices, etc.) to agents. Each agent receives at most one object and monetary compensations are not possible. We completely describe all rules satisfying efficiency and resource-monotonicity. The characterized rules assign the objects in a sequence of steps such that at each step there is either a dictator or two agents who “trade” objects from their hierarchically specified “endowments.”
Resumo:
In practice we often face the problem of assigning indivisible objects (e.g., schools, housing, jobs, offices) to agents (e.g., students, homeless, workers, professors) when monetary compensations are not possible. We show that a rule that satisfies consistency, strategy-proofness, and efficiency must be an efficient generalized priority rule; i.e. it must adapt to an acyclic priority structure, except -maybe- for up to three agents in each object's priority ordering.
Resumo:
We study the problem of centralized allocation of indivisible objects in multiple markets. We show that the set of allocation rules that are group strategy-proof and Pareto-efficient are sequential dictatorships. Therefore, the solution of the joint al-location in multiple markets is significantly narrower than in the single-market case. Our result also applies to dynamic allocation problems. Finally, we provide conditions under which the solution of the single-market allocation coincides with the multiple-market case, and we apply this result to the study of the school choice problem with sibling priorities.
Resumo:
A common real-life problem is to fairly allocate a number of indivisible objects and a fixed amount of money among a group of agents. Fairness requires that each agent weakly prefers his consumption bundle to any other agent’s bundle. Under fairness, efficiency is equivalent to budget-balance (all the available money is allocated among the agents). Budget-balance and fairness in general are incompatible with non-manipulability (Green and Laffont, 1979). We propose a new notion of the degree of manipulability which can be used to compare the ease of manipulation in allocation mechanisms. Our measure counts for each problem the number of agents who can manipulate the rule. Given this notion, the main result demonstrates that maximally linked fair allocation rules are the minimally manipulable rules among all budget-balanced and fair allocation mechanisms. Such rules link any agent to the bundle of a pre-selected agent through indifferences (which can be viewed as indirect egalitarian equivalence).
(Minimally) 'epsilon'-incentive compatible competitive equilibria in economies with indivisibilities
Resumo:
We consider competitive and budget-balanced allocation rules for problems where a number of indivisible objects and a fixed amount of money is allocated among a group of agents. In 'small' economies, we identify under classical preferences each agent's maximal gain from manipulation. Using this result we find the competitive and budget-balanced allocation rules which are minimally manipulable for each preference profile in terms of any agent's maximal gain. If preferences are quasi-linear, then we can find a competitive and budget-balanced allocation rule such that for any problem, the maximal utility gain from manipulation is equalized among all agents.
Resumo:
I analyze an economy with uncertainty in which a set of indivisible objects and a certain amount of money is to be distributed among agents. The set of intertemporally fair social choice functions based on envy-freeness and Pareto efficiency is characterized. I give a necessary and sufficient condition for its non-emptiness and propose a mechanism that implements the set of intertemporally fair allocations in Bayes-Nash equilibrium. Implementation at the ex ante stage is considered, too. I also generalize the existence result obtained with envy-freeness using a broader fairness concept, introducing the aspiration function.
Resumo:
We study the assignment of indivisible objects with quotas (houses, jobs, or offices) to a set of agents (students, job applicants, or professors). Each agent receives at most one object and monetary compensations are not possible. We characterize efficient priority rules by efficiency, strategy-proofness, and renegotiation-proofness. Such a rule respects an acyclical priority structure and the allocations can be determined using the deferred acceptance algorithm.
Resumo:
We study the assignment of indivisible objects with quotas (houses, jobs, or offices) to a set of agents (students, job applicants, or professors). Each agent receives at most one object and monetary compensations are not possible. We characterize efficient priority rules by efficiency, strategy-proofness, and reallocation-consistency. Such a rule respects an acyclical priority structure and the allocations can be determined using the deferred acceptance algorithm.