991 resultados para Inclusion Complex
Resumo:
Complexation between acyclovir (ACV), an antiviral drug used for the treatment of herpes simplex virus infection, and beta-cyclodextrin (beta-CD) was studied in solution and in solid states. Complexation in solution was evaluated using solubility studies and nuclear magnetic resonance spectroscopy (¹H-NMR). In the solid state, X-ray diffraction, differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and dissolution studies were used. Solubility studies suggested the existence of a 1:1 complex between ACV and beta-CD. ¹H-NMR spectroscopy studies showed that the complex formed occurs with a stoichiometry ratio of 1:1. Powder X-ray diffraction indicated that ACV exists in a semicrystalline state in the complexed form with beta-CD. DSC studies showed the existence of a complex of ACV with beta-CD. The TGA studies confirmed the DSC results of the complex. Solubility of ACV in solid complexes was studied by the dissolution method and it was found to be much more soluble than the uncomplexed drug.
Resumo:
Ropivacaine (RVC) is an enantiomerically pure local anesthetic (LA) largely used in surgical procedures, which presents physico-chemical and therapeutic properties similar to those of bupivacaine (BPV), but associated to less systemic toxicity This study focuses on the development and pharmacological evaluation of a RVC in 2-hydroxypropyl-beta-cyclodextrin (HP-P-CD) inclusion complex. Phase-solubility diagrams allowed the determination of the association constant between RVC and HP-beta-CD (9.46 M-1) and showed an increase on RVC solubility upon complexation. Release kinetics revealed a decrease on RVC release rate and reduced hemolytic effects after complexation. (onset at 3.7 mM and 11.2 mM for RVC and RVCHP-beta-CD, respectively) were observed. Differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and X-ray analysis (X-ray) showed the formation and the morphology of the complex. Nuclear magnetic resonance (NMR) and job-plot experiments afforded data regarding inclusion complex stoichiometry (1:1) and topology. Sciatic nerve blockade studies showed that RVCHP-beta-CD was able to reduce the latency without increasing the duration of motor blockade, but prolonging the duration and intensity of the sensory blockade (p < 0.001) induced by the LA in mice. These results identify the RVCHP-beta-CD complex as an effective novel approach to enhance the pharmacological effects of RVC, presenting it as a promising new anesthetic formulation. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
Topical formulations of piroxicam were evaluated by determination of their in vitro release and in vivo anti-inflammatory effect. The in vitro release assay demonstrated that the microemulsion (ME) systems provided a reservoir effect for piroxicam release. However, the incorporation of the ME into carboxyvinilic gel provoked a greater reduction in the release of piroxicam than the ME system alone. Anti-inflammatory activity was carried out by the cotton pellet granuloma inhibition bioassay. Topical anti-inflammatory effect of the piroxicam inclusion complex/ME contained in carboxyvinilic gel showed significant inhibition of the inflammation process (36.9%, P < 0.05). Subcutaneous administration of the drug formulations showed a significant effect on the inhibition of inflammation, 68.8 and 70.5%, P <0.05, when the piroxicam was incorporated in ME and in the combined system beta -cyclodextrin (B-CD)/ME, respectively, relative to the buffered piroxicam (42.2%). These results demonstrated that the ME induced prolonged effects, providing inhibition of the inflammation for 9 days after a single dose administration. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
The interaction of piroxicam with beta-cyclodextrin (beta-CD), hexadecyltrimethylammonium bromide-based microemulsion (ME), and ME in the presence of beta-CD aimed at the optimization of topical drug delivery was studied. UV-VIS absorption spectra at pH 5.5 were obtained with and without beta-CD and ME. The stability constant (K) values for the piroxicam/beta-CD complex in the pH range 4.5-6.0 varied from 87 to 29 M-1. The cationic microemulsion was characterized by pseudo-ternary phase diagram. The association constant (K-s) of piroxicam/ME was determined using the framework of the pseudophase model. The value of K-s obtained for piroxicam at pH 5.5 was 132 M-1. At the same pH, the value of K-s for the incorporation of piroxicam/beta-CD complex in the ME was 150 M-1. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
"Alternatives for the Treatment of Schistosomiasis: Physico-Chemical Characterization of an Inclusion Complex Between Praziquantel and Hydroxypropyl-beta-Cyclodextrin". Praziquantel (PZQ) is the drug of choice commonly used for the treatment of shistosomiasis. However, it has low aqueous solubility, which could limit its bioavailability in the body. To circumvent these features, an inclusion complex with hydroxypropyl-beta-cyclodextrin (HP-beta-CD) was prepared. Thus, the objective of this work was to prepare and characterize the PZQ/HP-beta-CD inclusion complex. Morphological, spectroscopic, and calorimetric analysis showed the first signs of the guest/host interaction. The complexation kinetic analysis was used to determine the kinetic constant and, besides that, it was possible to establish the time consumed to reach equilibrium. Using the solubility isotherm, it was observed that the interaction with HP-beta-CD increased 2.4 fold the aqueous solubility of plain PZQ. In vitro cytotoxicity tests, using fibroblast cells, evidenced no toxicity for these cells at the concentrations tested. These results demonstrated that there is a potential use of PZQ in formulations with HP-beta-CD.
Resumo:
Local anesthetics (LA) belong to a class of pharmacological compounds that attenuate or eliminate pain by binding to the sodium channel of excitable membranes, blocking the influx of sodium ions and the propagation of the nerve impulse. S (-) bupivacaine (S(-) bvc) is a local anesthetic of amino-amide type, widely used in surgery and obstetrics for sustained peripheral and central nerve blockade. This article focuses on the characterization of an inclusion complex of S(-) bvc in 2-hydroxypropyl-β-cyclodextrin (HP-β-CD). Differential scanning calorimetry, scanning electron microscopy and X-Ray diffraction analysis showed structural changes in the complex. In preliminary toxicity studies, the cell viability tests revealed that the inclusion complex decreased the toxic effect (p<0.001) produced by S(-) bvc. These results suggest that the S(-) bvc:HP-β-CD inclusion complex represents a promising agent for the treatment of regional pain.
Resumo:
Local anesthetics (LA) belong to a class of pharmacological compounds that attenuate or eliminate pain by binding to the sodium channel of excitable membranes, blocking the influx of sodium ions and the propagation of the nerve impulse. S (-) bupivacaine (S(-) bvc) is a local anesthetic of amino-amide type, widely used in surgery and obstetrics for sustained peripheral and central nerve blockade. This article focuses on the characterization of an inclusion complex of S(-) bvc in 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD). Differential scanning calorimetry, scanning electron microscopy and X-Ray diffraction analysis showed structural changes in the complex. In preliminary toxicity studies, the cell viability tests revealed that the inclusion complex decreased the toxic effect (p<0.001) produced by S(-) bvc. These results suggest that the S(-) bvc:HP-ß-CD inclusion complex represents a promising agent for the treatment of regional pain. Keywords: S(-) bupivacaine; cyclodextrin; inclusion complex.
Resumo:
Ropivacaine (RVC) is an enantiomerically pure local anesthetic (LA) largely used in surgical procedures, which presents physico-chemical and therapeutic properties similar to those of bupivacaine (BPV), but associated to less systemic toxicity This study focuses on the development and pharmacological evaluation of a RVC in 2-hydroxypropyl-beta-cyclodextrin (HP-P-CD) inclusion complex. Phase-solubility diagrams allowed the determination of the association constant between RVC and HP-beta-CD (9.46 M-1) and showed an increase on RVC solubility upon complexation. Release kinetics revealed a decrease on RVC release rate and reduced hemolytic effects after complexation. (onset at 3.7 mM and 11.2 mM for RVC and RVCHP-beta-CD, respectively) were observed. Differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and X-ray analysis (X-ray) showed the formation and the morphology of the complex. Nuclear magnetic resonance (NMR) and job-plot experiments afforded data regarding inclusion complex stoichiometry (1:1) and topology. Sciatic nerve blockade studies showed that RVCHP-beta-CD was able to reduce the latency without increasing the duration of motor blockade, but prolonging the duration and intensity of the sensory blockade (p < 0.001) induced by the LA in mice. These results identify the RVCHP-beta-CD complex as an effective novel approach to enhance the pharmacological effects of RVC, presenting it as a promising new anesthetic formulation. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
The aim of this study was to determine whether inclusion complexes between 2-hydroxypropyl-beta-cyclodextrin (HP beta CD) and finasteride (FIN) are formed, and to characterize these. Equimolar FIN/HP beta CD solid systems in the presence or absence of 0.1% (w/v) of polyvinylpyrrolidone K30 (PVP K30) or 0.3% of chitosan were prepared by coevaporation and freeze-drying methods. The systems were characterized by phase solubility, NMR, DSC, and XRD analysis. The results suggest that true binary and ternary inclusion complexes were formed. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Cyclodextrins (CDs) are annular oligosaccharides containing 6-12 glucose unities joined together by alpha-1,4 bonds. They have a conical-truncated shape with a lipophilic cavity in which different molecules can be included resulting in a stable inclusion complex. The cyclodextrins have been widely applied in pharmaceutical technology with the objective of increasing the solubility, stability and bioavailability of drugs in different pharmaceutical dosage forms, such as tablets. In order to obtain beta-CD tablets, liquid dispersions of drug/beta-CD are usually submitted to different drying processes, like spray-drying, freeze-drying or slow evaporation, being this dry material added to a number of excipients. However, such drying processes can generate particulate materials showing problems of flow and compressibility, needing their conversion into granulates by means of wetting with granulation liquid followed by additional drying. In this work, the main objective was to evaluate the preparation of tablets without the need of this additional drying step. For this purpose an aqueous dispersion containing acetaminophen/beta-CD complex and cornstarch was dried using a spouted bed and the obtained granules were compressed in tablets. Acetaminophen was used as model drug due to its low water solubility and the inexpensive and widely available cornstarch was chosen as excipient. Acetaminophen powder was added into a beta-cyclodextrin solution prepared in distilled water at 70 degrees C. Stirring was kept until this dispersion cooled to room temperature. Then cornstarch was added and the resulting dispersion was dried in spouted bed equipment. This material was compressed into tablets using an Erweka Korsh EKO tablet machine. This innovative approach allowed the tablets preparation process to be carried out with fewer steps and represents a technological reliable strategy to produce beta-cyclodextrin inclusion complexes tablets. (C) 2010 Elsevier By. All rights reserved.
Resumo:
In this study we prepared an inclusion complex between an iodide analogue of metronidazole (MTZ-I) and cyclodextrin (CD) to develop a safer and more effective method of treating Trypanosoma cruzi infections. According to our results, MTZ-I and MTZ-I:β-CD were 10 times more active than MTZ, demonstrating that the presence of an iodine atom on the side chain increased the trypanocidal activity while maintaining its cytotoxicity. The selective index shows that MTZ-I was 10 times more active against T. cruzi than it was against mammalian cells. The modification of MTZ side chains provides a promising avenue for the development of new drugs.
Resumo:
This study describes unpublished research on improving the solubility of benznidazole by the formation of an inclusion complex. The cyclodextrins selected were αCD, βCD, γCD, HPβCD, RMβCD and SBβCD. All complexes were obtained in solution, presenting 1:1 stoichiometry according to the phase solubility diagram. The highest association constants were obtained with RMβCD and SBβCD, being selected for attainment of solid state complexes. These were characterized using XRD, SEM and dissolution test. The data obtained suggest the formation of complexes and indicate that these may provide a promising alternative way of developing solid doses of drug with suitable biopharmaceutical properties.