905 resultados para In vitro delivery studies


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of these studies was to compare the effect of liposome composition on physico-chemical characteristics and transfection efficacy of cationic liposomes both in vitro and in vivo. Comparison between 4 popularly used cationic lipids, showed 3b-N-(dimethylaminoethyl)carbamate (DC-Chol) to promote the highest transfect levels in cells in vitro with levels being at least 6 times higher than those of 1,2-di-O-octadecenyl-3-trimethylammonium propane (DOTMA). 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), and dimethyldioctadecylammonium (DDA) and approximately twice as efficient as dipalmitoyl-trimethylammonium-propane (DPTAP). To establish the role of the helper lipid, DC-Chol liposomes were formulated in combination with either 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) or cholesterol (Chol) (1:1 molar ratio) with and without the addition of phosphatidyl choline. The choice of helper lipid incorporated within the bilayer was found to influence the formation of complexes, their resultant structure and their transfection efficiency in vitro, with SUV-DNA complexes containing optimum levels of DOPE giving higher transfection than those containing cholesterol. The inclusion of PC within the formulation also reduced transfection efficiency in vitro. However, when administered in vivo, SUV-DNA complexes composed of PC:Chol:DC-Chol at a molar ratio of 16:8:4 micromole/ml were the most effective at inducing splenocyte proliferation upon exposure to antigen in comparison to control spleens. These results demonstrate that there is no in vitro/in vivo correlation between the transfection efficacy of these liposome formulations and in vitro transfection in the above cell model cannot be taken as a reliable indicator for in vivo efficacy of DNA vaccines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

4-(p-X-phenyl)thiosemicarbazone of napthaldehyde {where X = Cl (HL1) and X = Br (HL2)}, thiosemicarbazone of quinoline-2-carbaldehyde (HL3) and 4-(p-fluorophenyl) thiosemicarbazone of salicylaldehyde (H2L4) and their copper(I) {Cu(HL1)(PPh3)(2)Br]center dot CH3CN (1) and Cu(HL2)(PPh3)(2)Cl]center dot DMSO (2)} and copper(II) {((Cu2L2Cl)-Cl-3)(2)(mu-Cl)(2)]center dot 2H(2)O (3) and Cu(L-4)(Py)] (4)} complexes are reported herein. The synthesized ligands and their copper complexes were successfully characterized by elemental analysis, cyclic voltammetry, NMR, ESI-MS, IR and UV-Vis spectroscopy. Molecular structures of all the Cu(I) and Cu(II) complexes have been determined by X-ray crystallography. All the complexes (1-4) were tested for their ability to exhibit DNA-binding and - cleavage activity. The complexes effectively interact with CT-DNA possibly by groove binding mode, with binding constants ranging from 10(4) to 10(5) M-1. Among the complexes, 3 shows the highest chemical (60%) as well as photo-induced (80%) DNA cleavage activity against pUC19 DNA. Finally, the in vitro antiproliferative activity of all the complexes was assayed against the HeLa cell line. Some of the complexes have proved to be as active as the clinical referred drugs, and the greater potency of 3 may be correlated with its aqueous solubility and the presence of the quinonoidal group in the thiosemicarbazone ligand coordinated to the metal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective was to estimate alterations in adrenergic receptor sites of guinea pig vas deferens, in vivo and in vitro, induced by chronic denervation. The denervation process induced an increased sensitivity (3-fold at the EC50 level) without alteration in the maximum response to phenylephrine in vitro. The sensitivity alteration was characterized by the decrease in the dissociation constant of phenylephrine for alpha-adrenoceptor [K-A: normal tissue 3.50 (0.75-16.21) x 10(-5) and denervated tissue 0.43 (0.11-1.67) x 10(-5) M, p < 0.05] without changing the dissociation constant of prazosin. A decrease in pD(2)' value for phenylephrine-phenoxybenzamine, probably due to a qualitative rather than a quantitative alteration in the alpha-adrenoceptor, was also shown in vitro [pD(2)': normal tissue (8.2776 +/- 0.0402) and denervated tissue (8.0051 +/- 0.0442), p < 0.05]. No change in sensitivity and maximum response to phenylephrine was observed in vivo after denervation, although an increased resistance of vas deferens to phenoxybenzamine blockade has been evidenced in this condition. (C) 1999 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to investigate the effect on the aqueous solubility and release rate of sulfamerazine (SMR) as model drug, inclusion complexes with beta-cyclodextrin (beta CD), methyl-beta-cyclodextrin (M beta CD) and hydroxypropyl-beta-cyclodextrin (HP beta CD) and a binary system with meglumine (MEG) were developed. The formation of 1: 1 inclusion complexes of SMR with the CDs and a SMR: MEG binary system in solution and in solid state was revealed by phase solubility studies (PSS), nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), thermal analysis and X-Ray diffractometry (XRD) studies. The CDs solubilization of SMR could be improved by ionization of the drug molecule through pH adjustments. The higher apparent stability constants of SMR:CDs complexes were obtained in pH 2.00, demonstrating that CDs present more affinity for the unionized drug. The best approach for SMR solubility enhancement results from the combination of MEG and pH adjustment, with a 34-fold increment and a S-max of 54.8 mg/ml. The permeability of the drug was reduced due to the presence of beta CD, M beta CD, HP beta CD and MEG when used as solubilizers. The study then suggests interesting applications of CD or MEG complexes for modulating the release rate of SMR through semipermeable membranes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beta-toxin (CPB) is the essential virulence factor of C. perfringens type C causing necrotizing enteritis (NE) in different hosts. Using a pig infection model, we showed that CPB targets small intestinal endothelial cells. Its effect on the porcine intestinal epithelium, however, could not be adequately investigated by this approach. Using porcine neonatal jejunal explants and cryosections, we performed in situ binding studies with CPB. We confirmed binding of CPB to endothelial but could not detect binding to epithelial cells. In contrast, the intact epithelial layer inhibited CPB penetration into deeper intestinal layers. CPB failed to induce cytopathic effects in cultured polarized porcine intestinal epithelial cells (IPEC-J2) and primary jejunal epithelial cells. C. perfringens type C culture supernatants were toxic for cell cultures. This, however, was not inhibited by CPB neutralization. Our results show that, in the porcine small intestine, CPB primarily targets endothelial cells and does not bind to epithelial cells. An intact intestinal epithelial layer prevents CPB diffusion into underlying tissue and CPB alone does not cause direct damage to intestinal epithelial cells. Additional factors might be involved in the early epithelial damage which is needed for CPB diffusion towards its endothelial targets in the small intestine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The response of human osteoblasts to materials is crucial for evaluating biocompatibility of an implant material for bone defects. Previous work in our lab demonstrated that the response of human osteoblasts to orthopaedic and dental materials in vitro varies depending on the sex and age of the patient [1]. Osteoblasts from female patients older than 60 years old, adhered less and produced less matrix proteins and calcification than osteoblasts from younger female patients and all ages of male patients. Recently developed, porous tantalum demonstrates improved biomechanical properties for bone and good biocompatibility in in vivo human studies, however there are few, if any, in vitro biocompatibility studies on this material. In this project, we aimed to compare the phenotypic expression of human osteoblasts from young and old female patients to commercially available Ti-6Al-4V and porous tantalum in a well-developed in vitro system. 1. Zhang H, Lewis CG, Aronow MS, Gronowicz G. The effect of patient age on human osteoblasts’ response to Ti-6Al-4V implants in vitro. J. Orthop. Res. 2004;22(1):30-8.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to produce a well-characterised electrospun polystyrene scaffold which could be used routinely for three-dimensional (3D) cell culture experimentation. A linear relationship (p<0.01p<0.01) between three principal process variables (applied voltage, working distance and polymer concentration) and fibre diameter was reliably established enabling a mathematical model to be developed to standardise the electrospinning process. Surface chemistry and bulk architecture were manipulated to increase wetting and handling characteristics, respectively. X-ray photoelectron spectroscopy (XPS) confirmed the presence of oxygen-containing groups after argon plasma treatment, resulting in a similar surface chemistry to treated tissue culture plastic. The bulk architecture of the scaffolds was characterised by scanning electron microscopy (SEM) to assess the alignment of both random and aligned electrospun fibres, which were calculated to be 0.15 and 0.66, respectively. This compared to 0.51 for collagen fibres associated with native tissue. Tensile strength and strain of approximately of 0.15 MPa and 2.5%, respectively, allowed the scaffolds to be routinely handled for tissue culture purposes. The efficiency of attachment of smooth muscle cells to electrospun scaffolds was assessed using a modified 3-[4,5-dimethyl(thiazol-2yl)-3,5-diphery] tetrazolium bromide assay and cell morphology was assessed by phalloidin-FITC staining of F-actin. Argon plasma treatment of electrospun polystyrene scaffold resulted in significantly increased cell attachment (p<0.05p<0.05). The alignment factors of the actin filaments were 0.19 and 0.74 for the random and aligned scaffold respectively, compared to 0.51 for the native tissue. The data suggests that electrospinning of polystyrene generates 3D scaffolds which complement polystyrene used in 2D cell culture systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Topical corticosteroids, e.g., dexamethasone acetate (DMA), are extensively used to treat cutaneous inflammatory disorders even though their use is correlated with potential local and systemic side effects. The objective of this study was to develop and test the topical delivery of DMA-loaded surfactant based systems in vitro; these studies could guarantee a suitable delivery and therapeutic efficacy, as well as minimize DMA's side effects. A phase diagram was constructed using polyoxypropylene (5) polyoxyethylene (20) cetyl alcohol as the surfactant (S), isopropyl myristate as the oil phase (O) and water (W). The systems were characterized using polarization light microscopy (PLM), as well as rheological and small angle X-ray scattering (SAXS) measurements. Depending on the concentration of the constituents, it was possible to obtain microemulsions (MEs) and liquid crystalline mesophases (lamellar and hexagonal). These types of arrangement were verified using PLM measurements. The SAXS results revealed that increasing the W/S ratio led to ME, as well as lamellar (LAM) and hexagonal (HEX) arrangements. The MEs displayed typical Newtonian behavior while the LAM and HEX phases exhibited pseudoplasticity and plasticity, respectively. The MEs displayed excellent drug solubilization that was approximately 10-fold higher than was observed with the individual components. The in vitro cutaneous permeation studies using pig ear skin and analysis of the mechanical parameters (hardness, compressibility, cohesiveness and adhesiveness) were carried out with a HEX phase and O/W emulsion. The HEX phase achieved better drug permeation and retention in the skin while its mechanical properties were suitable for skin administration. PPG-5-CETETH-20-based systems may be a promising platform delivering DMA and other topical corticosteroids through the skin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Photodynamic therapy (PDT) using 5-aminolevulinic acid (5-ALA) is a skin cancer therapy that still has limitations due to the low penetration of this drug into the skin. We have proposed in this work a delivery system for 5-ALA based on liposomes having lipid composition similar to the mammalian stratum corneum (SCLLs) in order to optimize its skin delivery in Photodynamic Therapy (PDT) of skin cancers. Methods SCLLs were obtained by reverse phase evaporation technique and size distribution of the vesicles was determinated by photon correlation spectroscopy. In vitro permeation profile was characterized using hairless mouse skin mounted in modified Franz diffusion cell. Results Size exclusion chromatography on gel filtration confirmed vesicle formation. SCLLs obtained by presented a degree of encapsulation of 5-ALA around 5.7%. A distribution of vesicle size centering at around 500 nm and 400 nm respectively for SCLLs and SCLLs containing 5-ALA was found. In vitro 5-ALA permeation study showed that SCLLs preparations presented higher skin retention significantly (p < 0.05) on the epidermis without SC + dermis, with a decreasing of skin permeation compared to aqueous solution. Conclusions The in vitro delivery performance provided by SCLLs lead to consider this systems adequate for the 5-ALA-PDT of skin cancer, since SCLLs have delivered 5-ALA to the target skin layers (viable epidermis + dermis) to be treated by topical PDT of skin cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three new complexes of Cu(I) have been synthesized using ancillary ligands like thiopyrimidine (tp) a modified nucleobase, and nicotinamide (nie) or vitamin B3, and characterized by spectroscopy and X-ray crystallography. In vitro cytotoxicity studies of the complexes on various human cancer cell lines such as Colo295, H226, HOP62, K562, MCF7 and T24 show that Cu(PPh3)(2)(tp)Cl] and Cu(PPh3)(2)(tp)ClO4 (2) have in vitro cytotoxicity comparable to cisplatin. Complex Cu(nic)(3)PPh3]ClO4 (3) is non-toxic and increases the life span by about 55 % in spontaneous breast tumor model. DNA binding and cleavage studies show that complex (3) binds to calf thymus DNA with an apparent binding constant of 5.9 x 10(5)M and completely cleaves super-coiled DNA at a concentration of 400 mu M, whereas complexes (1) and (2) do not bind DNA and do not show any cleavage even at 1200 mu M. Thus, complex (3) may exhibit cytotoxicity Via DNA cleavage whereas the mechanism of cytotoxicity of (1) and (2) probably involves a different pathway.